MIT线性代数笔记Lecture5-Lecture6

Lecture 5 Permutation矩阵,矩阵转置,向量空间

1.Permutation矩阵回顾,存在行交换情况下的LU分解

  • P矩阵及新分解形式介绍:
    由上节末尾可知,如果在高斯消元的过程中遇到主元位置为0的情况,我们需要一个Permutation矩阵 P P P来完成行交换的操作(Get a proper pivot)。
    其中 P P P为行交换后的单位阵,在矩阵左侧乘以 P P P可以视作交换相应的行。
    此时LU分解可以表示为:
    P A = L U PA = LU PA=LU
    也即 A A A经过行交换之后可以转换为主元位置都不为0的情况,进而分解成 L U LU LU的形式。
    对于任意可逆阵 A A A均存在这种分解。
  • P矩阵的性质:
    P − 1 = P T ,   P T P = I P^{-1} = P^T, \ P^{T}P=I P1=PT, PTP=I
    线性代数对于这种性质很感兴趣,在这其中 P P P只是这个概念中心的一小部分。

2. 矩阵转置与对称

  • 定义与性质
    ( A T ) i j = A j i (A^T)_{ij}=A_{ji} (AT)ij=Aji
    A T = A A^T=A AT=A,称 A A A为对称矩阵。
    A T A A^TA ATA为对称矩阵,因为 ( A T A ) T = A T A (A^TA)^T=A^TA (ATA)T=ATA

3. 向量空间

向量空间指的是许多许多向量构成的空间,当然这些向量并不是随意的,它们必须遵循某些规则,比如在空间内可以进行加法和标量乘运算。

  • 一个 R 2 R^2 R2的例子引入向量空间
    R 2 R^2 R2指的是所有2维实向量构成的集合。例如 [ 3 2 ] \begin{bmatrix}3\\2\end{bmatrix} [32], [ − 1 4 ] \begin{bmatrix}-1\\4\end{bmatrix} [14] [ π e ] \begin{bmatrix}\pi\\e\end{bmatrix} [πe]等等。形象地来说, R 2 R^2 R2就是我们画的xy平面。
    规则:
  1. R 2 R^2 R2空间内可以进行加法运算,结果仍在 R 2 R^2 R2空间内。也称作对加法运算是封闭的。
    如: [ 3 2 ] + [ π e ] = [ 3 + π 2 + e ] \begin{bmatrix}3\\2\end{bmatrix}+\begin{bmatrix}\pi\\e\end{bmatrix}=\begin{bmatrix}3+\pi\\2+e\end{bmatrix} [32]+[πe]=[3+π2+e]
  2. R 2 R^2 R2空间可以进行标量乘,结果仍在 R 2 R^2 R2空间内。对标量乘法也是封闭的。
    如: 3 [ 3 2 ] = [ 9 6 ] 3\begin{bmatrix}3\\2\end{bmatrix}=\begin{bmatrix}9\\6\end{bmatrix} 3[32]=[96]
    由这条性质可知原点包含在任何向量空间内,0乘以任何向量都为0向量。
  3. 向量空间内的向量的线性组合仍在该空间内。
  • 子空间
    某个向量空间的子集,本身也满足向量空间的定义。
    举例:
    x y xy xy平面内第一象限的点不是线性空间,不满足乘法封闭性。
    x y xy xy平面内一条过原点的直线是 R 2 R^2 R2的子空间。
    R 2 R^2 R2子空间的全部情况:
    1. R 2 R^2 R2本身。
    2. 所有过原点的直线。
    3. 只有0向量。

3. 子空间是如何由矩阵产生的

例如:使用 A = [ 1 3 2 3 4 1 ] A=\begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix} A=124331构建子空间:
(1) 由列向量生成:
A A A所有列的线性组合构成一个子空间。
该空间称为列空间(Column Space),记作 C ( A ) C(A) C(A)


Lecture 6 零空间和列空间

1.子空间内容回顾。

  • 补充了子空间的两个性质:
    子空间的并不一定为新的子空间(绝大部分情况下不是新的子空间),子空间的交为新的子空间。

2.列空间(column space)的理解

以如下 A A A的列空间 C ( A ) C(A) C(A)为例:
A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix} A=123411112345
提出两个问题:

  1. A A A中列向量的线性组合是否可以组成整个 R 4 R^4 R4的空间呢?
    这个问题也等价于:方程组 A x = b Ax=b Ax=b是否一定有解?答案是否定的,因为有四个方程而只有3个未知数。
    所以将方程组与列空间联系起来就是:对于 A x = b Ax=b Ax=b b b b位于 A A A的列空间时,方程组有解。
  2. A A A的每一列是否都对产生列空间产生了贡献?
    No,第三列是由第一列和第二列相加而来,本身就是第一列和第二列的线性组合,对于构成列空间没有贡献,也称其为dependent(线性相关)。
    此时将第一列和第二列称为主列(pivot columns)。

所以,A的列空间为 R 4 R^4 R4中的2维子空间

3.零空间(null space)的理解

仍使用上一小节中的 A A A矩阵:
A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix} A=123411112345

  • 零空间的定义:
    A A A的零空间是指:所有 x = [ x 1 x 2 x 3 ] x=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix} x=x1x2x3满足 A x = 0 Ax=0 Ax=0构成的空间。
    对于A矩阵,首先可以找到一个特解: x = [ 1 1 − 1 ] x=\begin{bmatrix}1\\1\\-1\end{bmatrix} x=111,然后可以发现它的任意 c c c倍均是 A x = 0 Ax = 0 Ax=0的解。从向量角度看,所有的解构成了3维空间内一条穿过原点的直线。

  • 验证满足 A x = 0 Ax=0 Ax=0的所有 x x x构成的空间是一个子空间。
    1. 验证加法封闭性:
    如果 A v = 0 , A w = 0 Av=0,Aw=0 Av=0,Aw=0 v v v w w w是两个不同的解),则 A ( v + w ) = 0 A(v+w)=0 A(v+w)=0。显然成立, A ( v + w ) = A v + A w = 0 A(v+w)=Av+Aw=0 A(v+w)=Av+Aw=0
    1. 验证乘法封闭性:
    A v = 0 ⇒ A ( c v ) = 0 Av=0\Rightarrow A(cv)=0 Av=0A(cv)=0。( A ( c v ) = c A v = 0 A(cv)=cAv=0 A(cv)=cAv=0;)

  • Ax = b的解是否构成向量空间
    No,因为0向量不在空间内,肯定不是向量空间。
    因为向量空间总是包含原点,所以,对于 A x = b Ax=b Ax=b,如果关注的是 x x x,则问题只限于 A x = 0 Ax=0 Ax=0

4.总结:构成子空间的方法

构成子空间既可以直截了当的给出一组向量,由它们的线性组合得到,也可以给出一个 A x = 0 Ax=0 Ax=0的方程组,求解满足所有条件的x构成的空间。这两种方法都是构成子空间的重要方法。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值