
线性代数
Yc_csdn
这个作者很懒,什么都没留下…
展开
-
MIT线性代数笔记Lecture3-Lecture4
Lecture3 矩阵乘法与逆 1 矩阵乘法及其5种方式 1. 对于结果矩阵中的特定元素单个计算(entry) 假定矩阵乘法为: AB=CAB = CAB=C 当Am×n,Bn×sA_{m\times n},B_{n\times s}Am×n,Bn×s时矩阵可乘(内标相同),且得到结果Cm×sC_{m\times s}Cm×s。 C中iii行jjj列的元素为: Ci,j=(Row&nbsp...原创 2019-02-19 21:19:55 · 377 阅读 · 0 评论 -
MIT线性代数笔记Lecture1-Lecture2
Lecture1 方程组与矩阵 1. Ax = b 的两种理解方式 行表示(Row Picture) 代表方程组的解,二维三维平面内表现为直线线或平面的交点,交线等等。 列表示(Column Picture) 表示矩阵列向量的线性组合。若A为n x n方阵,且列向量均线性无关(即任意列向量不可以用其他列向量线性组合表示),则n维空间内任意n维向量可以用A的列向量的线性组合表示。A的列为一组基。相...原创 2019-02-13 12:34:23 · 373 阅读 · 0 评论 -
MIT线性代数笔记Lecture5-Lecture6
Lecture 5 Permutation矩阵,矩阵转置,向量空间 1.Permutation矩阵回顾,存在行交换情况下的LU分解 P矩阵及新分解形式介绍: 由上节末尾可知,如果在高斯消元的过程中遇到主元位置为0的情况,我们需要一个Permutation矩阵PPP来完成行交换的操作(Get a proper pivot)。 其中PPP为行交换后的单位阵,在矩阵左侧乘以PPP可以视作交换相应的行。...原创 2019-03-01 18:10:28 · 414 阅读 · 0 评论 -
MIT线性代数笔记Lecture7-Lecture8
Lecture7 求解Ax=0 1.零空间的计算 计算方法 例如: A=[1222246836810] A=\begin{bmatrix} 1&2&2&2\\ 2&4&6&8\\ 3&6&原创 2019-03-08 20:43:22 · 308 阅读 · 0 评论 -
MIT线性代数笔记Lecture9-Lecture10
Lecture9 线性无关,生成空间,基和维数 1. 线性相关性 背景 当矩阵A列数大于行数时,很有可能有无穷多个非零解,因为存在自由变量。 线性相关性 设有向量v1,v2,... ... ,vnv_1,v_2,... \ ... \ ,v_nv1,v2,... ... ,vn,在什么情况下v1,v2,... ... ,vnv_1...原创 2019-03-09 21:04:25 · 448 阅读 · 1 评论