算法整理--区间列表的交集

题目

给定两个由一些 闭区间 组成的列表,firstList 和 secondList ,其中 firstList[i] = [starti, endi] 而 secondList[j] = [startj, endj] 。每个区间列表都是成对 不相交 的,并且 已经排序 。

返回这 两个区间列表的交集 。

形式上,闭区间 [a, b](其中 a <= b)表示实数 x 的集合,而 a <= x <= b 。

两个闭区间的 交集 是一组实数,要么为空集,要么为闭区间。例如,[1, 3] 和 [2, 4] 的交集为 [2, 3] 。

示例 1:

输入:firstList = [[0,2],[5,10],[13,23],[24,25]], secondList = [[1,5],[8,12],[15,24],[25,26]]
输出:[[1,2],[5,5],[8,10],[15,23],[24,24],[25,25]]

示例 2:

输入:firstList = [[1,3],[5,9]], secondList = []
输出:[]

示例 3:

输入:firstList = [], secondList = [[4,8],[10,12]]
输出:[]

示例 4:

输入:firstList = [[1,7]], secondList = [[3,10]]
输出:[[3,7]]

思路

这个题要思考两个部分,一个是对选定A B的哪个区间找区间的问题,一个是选定AB两个区间,如何得出结果

先假设两个区间确定,对于这俩区间,可能会出现下面的情况

1.两个区间没有重合部分,不需要输出

2.两个区间部分重叠或者全重叠

需要输出重叠部分,也就是图中两条线包括的地方,这个时候,两条线的起始位置是这两个区间的起始区间的比较大的内个,记作start,结束位置是两个区间的结束位置的比较小的那个,记作end,需要输出的数据就是[start,end]

我们要比较两个区间的起始位置大小,找最大的作为start,比较两个区间的结束位置的大小,找比较小的内阁作为end

第二个问题是如何找两个对应的区间的问题,

 

 如图所示,先找1和一的对应空间,当找到后,由于1的结束位置比一小,找2和一的对应空间,找到后,一的结束位置比2的结束位置小,找2和三的对应空间,所以要对每个区间的结束位置作比较,如果谁的比较小,说明此区间找完后与他对应的区间还能继续找下一个区间和他对应,而此比较小的结束位置的区间要往后找

代码

class Solution {

    public int[][] intervalIntersection(int[][] A, int[][] B) {

        List<int[]> list = new ArrayList(); //创建一个集合用了来存放结果

        int i = 0;//找起始位置

        int j = 0;//找结束位置

        while(i<A.length && j<B.length){

            int start = Math.max(A[i][0],B[j][0]);//比较两个区间的起始位置的比较大的存到start作为输出结果的起始位置

            int end = Math.min(A[i][1],B[j][1]);//比较两个区间的终止位置比较小的那个存放到end作为输出结果的结束位置

            if(start<=end){

                list.add(new int[]{start,end});//如果找到的起始位置小于等于结束位置说明两个区间有交集

              }

                if(A[i][1] < B[j][1]){

                i++;

            }else

            j++;


 

        }判断两个区间的结束位置大小来决定哪个向后找区间

        return list.toArray(new int[list.size()][]);//把结果保存到集合里

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值