题意:给一个n,每次操作可以选n的一个因子除n,直到其为1。求操作次数的期望。
思路:dp[n]表示n的操作次数期望。设n有cnt个因子,那么每次如果取的是2~n之间的因子,则有(dp[x] + 1) * (1 / cnt);若为1,则有(dp[n] + 1) / (1 / cnt)。得到等式:
dp[n] = ((dp[a] + 1) + (dp[b] + 1) + ... + (dp[x] + 1)) + (dp[n] + 1) / cnt.(a,b,...,x为n的1 ~ n - 1之间的因子)
移项得:
dp[n] = (dp[a] + dp[b] + ... + dp[x] + cnt) / (cnt - 1).
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cstdio>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <cmath>
#include <set>
#include <map>
using namespace std;
typedef long long LL;
#define mem(a, n) memset(a, n, sizeof(a))
#define ALL(v) v.begin(), v.end()
#define si(a) scanf("%d", &a)
#define sii(a, b) scanf("%d%d", &a, &b)
#define siii(a, b, c) scanf("%d%d%d", &a, &b, &c)
#define pb push_back
#define eps 1e-8
const int inf = 0x3f3f3f3f, N = 1e5 + 5, MOD = 1e9 + 7;
int T, cas = 0;
int n, m;
double dp[N];
void init() {
mem(dp, 0);
for(int i = 2; i < N; i ++) {
int cnt = 0;
double sum = 0;
for(int j = 1; j * j <= i; j ++) {
if(i % j == 0) {
sum += dp[j] + dp[i / j];
cnt += 2;
if(j * j == i) sum -= dp[j], cnt --;
}
}
dp[i] = (sum + cnt) / (cnt - 1);
}
}
int main(){
#ifdef LOCAL
freopen("/Users/apple/input.txt", "r", stdin);
// freopen("/Users/apple/out.txt", "w", stdout);
#endif
init();
si(T);
while(T --) {
si(n);
printf("Case %d: %.6f\n", ++ cas, dp[n]);
}
return 0;
}