【笔记】robust MVDR

MVDR波束形成具有较高SNR,但易受校准误差、导向矢量误差、相关矩阵估计误差等各种失配的影响,造成SOI损失。目前有不少研究致力于增加MVDR稳定性,基于个人有限的理解,现将这些论文整理成笔记。

[1] Robust Adaptive Beamforming Based on Steering Vector Estimation With as Little as Possible Prior Information

最优导向矢量可通过最大功率估计

\underset{\mathbf{a}}{\rm{minimize}}\quad\mathbf{a}^H\hat{\mathbf{R}}^{-1}\mathbf{a}

\rm{subject\;to}\quad\mathbf{a}^H\tilde{\mathbf{C}}\mathbf{a}\leq\Delta_0,\;\Vert\mathbf{a}\Vert^2=N

其中

\Delta_0=\underset{\theta\in\Theta}{\rm{max}}\;\mathbf{d}^H(\theta)\tilde{\mathbf{C}}\mathbf{d}^H(\theta),\;\tilde{\mathbf{C}}=\int_{\tilde{\Theta}}\mathbf{d}(\theta)\mathbf{d}^{H}(\theta)\rm{d}\theta

\tilde\Theta\Theta 的补集,\Theta是SOI可能处在的方位,这里的重点是约束 \mathbf{a}^H\tilde{\mathbf{C}}\mathbf{a}\leq\underset{\theta\in\Theta}{\rm{max}}\;\mathbf{d}^H(\theta)\tilde{\mathbf{C}}\mathbf{d}^H(\theta)要求了导向矢量 \mathbf{a}\Theta中,而不会收敛到任何与干扰方向相关的导向矢量的线性组合中。上述QCQP问题转化成SDP问题求解

\underset{\mathbf{a}}{\rm{minimize}}\;\rm{Tr}(\mathbf{R}^{-1}\mathbf{a}\mathbf{a}^H)

\rm{subject\;to}\;\rm{Tr}(\mathbf{a}\mathbf{a}^H)=N,\;\rm{Tr}(\tilde{\mathbf{C}}\mathbf{a}\mathbf{a}^H)\leq\Delta_0,\;\mathbf{a}\mathbf{a}^H\succeq\mathbf{0}

论文中的仿真结果

算法复杂度为O(N^{4.5})

[2] New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation

基于[1]所提出优化问题,作者提出增加少量的先验信息换取波束形成效果的提升,优化问题变为如下

\underset{\mathbf{a}}{\rm{minimize}}\quad\mathbf{a}^H\hat{\mathbf{R}}^{-1}\mathbf{a}

\rm{subject\;to}\quad\mathbf{a}^H\tilde{\mathbf{C}}\mathbf{a}\leq\Delta_0,\;N(1-\eta_1)\leq\Vert\mathbf{a}\Vert^2\leq N(1+\eta_2)

                       \Vert\mathbf{Q}^H(\mathbf{a}-\mathbf{a}_0)\Vert^2\leq\varepsilon

第二个约束相当于放宽了优化问题的可行域,取而代之是增加最优解与目标导向矢量相似性的约束,即这里的第三个约束,\mathbf{Q}定义的是广义相似性,论文里的仿真取最简洁的情况 \mathbf{Q}=\mathbf{I} ,即 \Vert(\mathbf{a}-\mathbf{a}_0)\Vert^2\leq\varepsilon ,约束条件描述的空间变为球体。这里增加的先验信息可以允许对目标导向矢量较粗略的估计,实际论文取 \varepsilon=0.3N,\;\eta_1=\eta_2=0.5 是可以接受的,并不违背[1]所提出方法的初衷,即从最少的先验信息中得到最优导向矢量估计。麻烦的是这里的优化问题不是一个凸优化问题,实际上在\mathbf{Q}=\mathbf{I} 情况下,这里的QCQP问题转化成SDP问题后,可以得到全局最优解,但对于任意的\mathbf{Q}则不能保证得到全局最优解。论文有大篇幅证明这里的QCQP等价于转化后的SDP,具体细节不在这里赘述。

作者另提出一个基准 \Delta_1=\underset{\theta\in\Theta}{min}\;\mathbf{d}^H(\theta)\mathbf{C}\mathbf{d}(\theta),\;\mathbf{C}=\int_{\Theta}\mathbf{d}(\theta)\mathbf{d}^H(\theta)\rm{d}\theta ,将上面优化问题约束改成\mathbf{a}^H\tilde{\mathbf{C}}\mathbf{a}\leq\Delta_0 改成\mathbf{a}^H\mathbf{C}\mathbf{a}\geq\Delta_1

实际上利用基准 \Delta_0\Delta_1 都能有效地将导向矢量约束在期望导向区域的附近,远离干扰方向导向矢量的线性组合。对比[1]的优化方法(KVH beamformer),作者提出的两种方法略优。

[3] Performance of DMI and Eigenspace-Based Beamformers

这篇介绍的算是特征空间波束成形的基础,假定有J个干扰源,相关矩阵

R_x=P_sS_dS_d^H+\sum_{j=1}^{J}P_{ij}S_{ij}S_{ij}^H+\sigma^2I=\sum_{i=1}^{M}\lambda_ie_ie_i^H

其中特征值\lambda_1\geq\lambda_2\geq...\geq\lambda_{J+2}=...=\lambda_M=\sigma^2,特征空间E_s=[e_1,e_2,...,e_{J+1}]等价于信号干扰子空间,特征空间E_n=[e_{J+2},...,e_{M}]则形成噪声子空间,利用S_d\perp\{e_{J+2},...,e_M\},可以将MVDR的加权改写成

W=\mu R^{-1}S_d=\mu E_s\Lambda^{-1}E_s^HS_d,其中\mu=[S_d^HE_s\Lambda^{-1}E_s^HS_d]^{-1}

由于原论文没有考虑导向矢量失配,这里自己仿真了一下

导向矢量失配使在高输入SNR的情况下,MVDR的效果急剧下降。虽然这里提出的特征空间算法对比MVDR有一定提升,但没有解决导向矢量失配的问题,在高输入SNR的情况下并不如简单的对角加载。另外,尽管论文声称ESB在过度估计干扰数量的情况下仍有相当效果,但实际测试中干扰数量的估计对算法效果有较大影响。

[4] Robust MVDR Beamforming Using the DOA Matrix Decomposition

论文讨论的方法基本上是基于ESPRIT的源定位方法,这里先复习一下ESPRIT[5]

考虑两个子阵组成的阵列

\mathbf{x}_1(t)=\mathbf{A}\mathbf{s}(t)+\mathbf{n}_1(t)

\mathbf{x}_2(t)=\mathbf{A\Phi}\mathbf{s}(t)+\mathbf{n}_2(t)

假设有d个声源,\mathbf{\Phi}=\rm{diag}\{e^{j\gamma_1},e^{j\gamma_2},...,e^{j\gamma_d}\},\;\gamma_k=\omega\Delta\rm{sin}\theta_k/c\mathbf{\Phi}定义了d个到达源的旋转不变性,很多地方在介绍ESPRIT的时候都用了ULA作为例子,其实线性阵列不是ESPRIT的硬性要求,但阵列必须可分为两个对源旋转不变的子阵,\Delta在这里定义了两个子阵的间距。也就是说简单的平移保留旋转不变性,但对阵列做旋转或对称操作就不保证旋转不变性,那最简单的方法就是先设计子阵1,再平移得到子阵2。整个阵列输出为

\mathbf{x}(t)=\left[\begin{array}{c}\mathbf{x}_1(t)\\\mathbf{x}_2(t)\end{array}\right]=\left[\begin{array}{c}\mathbf{A}\\\mathbf{A\Phi}\end{array}\right]\mathbf{s}(t)+\left[\begin{array}{c}\mathbf{n}_1(t)\\\mathbf{n}_2(t)\end{array}\right]=\bar{\mathbf{A}}\mathbf{s}(t)+\mathbf{n}(t)

对相关矩阵做特征分解

\mathbf{R}=E[\mathbf{x}\mathbf{x}^H]=\mathbf{E}_s\mathbf{R}_s\mathbf{E}_s^H+\sigma^2\mathbf{I}

由于\rm{span}\{\mathbf{E}_s\}=\rm{span}\{\bar{\mathbf{A}}\},必存在唯一非奇异的\mathbf{T}使得\mathbf{E}_s=\bar{\mathbf{A}}\mathbf{T},则

\mathbf{E}_s=\left[\begin{array}{c}\mathbf{E}_{s1}\\\mathbf{E}_{s2} \end{array} \right ]=\left[\begin{array}{c}\mathbf{AT}\\\mathbf{A\Phi T}\end{array}\right]

由此可得\mathbf{E}_{s2}=\mathbf{E}_{s1}\mathbf{T}^{-1}\mathbf{\Phi T}=\mathbf{E}_{s1}\mathbf{\Psi},由于\mathbf{\Phi}\mathbf{\Psi}相似,\mathbf{\Psi}的特征值一定是\mathbf{\Phi}的对角元素,\mathbf{\Psi}通过最小二乘求解\mathbf{\Psi}=\mathbf{E}_{s1}^{\dagger}\mathbf{E}_{s2}

而论文[4]中的方法是

\mathbf{R}_{11}=E[\mathbf{x}_1\mathbf{x}_1^H]=\mathbf{AR}_s\mathbf{A}^H+\sigma^2\mathbf{I}=\mathbf{R}_{110}+\sigma^2\mathbf{I}

\mathbf{R}_{21}=E[\mathbf{x}_2\mathbf{x}_1^H]=\mathbf{A\Phi R}_s\mathbf{A}^H

假设有q个干扰源,其中\mathbf{R}_{110}就是\mathbf{R}_{11}最大的q+1个特征值和对应特征向量构成的相关矩阵,若令(M-1)\times(M-1)矩阵\mathbf{R}_d=\mathbf{R}_{21}\mathbf{R}_{110}^{\dagger},则\mathbf{R}_d满足\mathbf{R}_d=\mathbf{A\Phi}\mathbf{A}^{-1},其中\mathbf{R}_{110}^{\dagger}=\sum_{i=1}^{q+1}\frac{1}{\mu_i}\nu_i\nu_i^H,然后对\mathbf{R}_d做特征分解,特征向量为\{\nu_i\},取修正的导向矢量为

\mathbf{a}_r(\theta_0)=\underset{\nu_i}{\rm{argmax}}\frac{\mathbf{a}^H(\theta_0)\nu_i}{\vert\mathbf{a}^H(\theta_0)\vert\vert\nu_i\vert}

这相当于通过ESPRIT做源定位,然后找出一个定位与期望来波方向最接近的,相应的特征向量作为导向矢量,注意\mathbf{R}_d的特征向量就是组成\mathbf{A}的向量。下一步是把相关矩阵关于\mathbf{a}_r=\nu_j的特征值降到噪声水平,即

\hat{\mathbf{R}}^{-1}=\sum_{i=1,i\neq j}^{M-1}\frac{1}{\mu_i}\nu_i\nu_i^H+\frac{1}{\sigma^2}\nu_j\nu_j^H

先看结果

论文里没有明确说\mathbf{R}_{110}是如何估计的,实际上无论是ESPRIT还是[4]中的方法都没有办法完全把信号干扰子空间和噪声子空间分离,信号干扰子空间不过是从输入的相关矩阵最大的q+1个特征值对应的特征向量展开的空间估计,由于存在噪声,对于ESPRIT

\rm{span}\{\mathbf{E}_{s}\}\neq\rm{span}\{\mathbf{A}\},\;\rm{span}\{\mathbf{E}_{s1}\}\neq\rm{span}\{\mathbf{E}_{s2}\}

因此\mathbf{a}_r是来波方向导向矢量的有偏估计。另外,不论\mathbf{a}_r\mathbf{a}_0相差多少,输出总是保留\mathbf{a}_r附近的信号,需要考虑进一步的限制,但若只按论文展示的结果看,效果还是可以的。

[6] Robust MVDR beamforming based on covariance matrix reconstruction

通常在其它文献中看到这篇文献的介绍都是一笔带过,最显赫的就是一条公式

\tilde{\mathbf{R}}=\mathbf{R}-\frac{\mathbf{a}(\theta_0)\mathbf{a}(\theta_0)^H\mathbf{R}\mathbf{a}(\theta_0)\mathbf{a}(\theta_0)^H}{(\mathbf{a}(\theta_0)^H\mathbf{a}(\theta_0))^2}

十分简洁,但实际上这篇论文还是挺有意思的。论文再一次说明了在低SNR下由于噪声存在,MVDR会更少地专注于抵消有导向矢量失配来波,但是在高SNR下,抵消效应就很明显了。由于希望来自\theta_0方向的信号在导各种误差下不会被抵消,对角加载人为地加入噪声,这显然也削弱了对干扰信号的抑制,而论文采用的方法是从相关矩阵中减去期望来波方向的分量,但是这样做就不能保证\tilde{\mathbf{R}}是半正定的。这里就指出了从半正定矩阵\mathbf{R}减去一个rank-1的共轭对称矩阵

\tilde{\mathbf{R}}=\mathbf{R}-\mathbf{vv}^H

\lambda_i(\tilde{\mathbf{R}})<\lambda_i(\mathbf{R})<\lambda_{i-1}(\tilde{\mathbf{R}}),即\tilde{\mathbf{R}}最多只有一个小于零的特征值。下一步就是考虑如何修正这个\tilde{\mathbf{R}}让它成为半正定。论文用整整一页去证明对

\tilde{\mathbf{R}}=\mathbf{R}-\lambda\frac{\mathbf{a}(\theta_0)\mathbf{a}^H(\theta_0)}{\Vert\mathbf{a}(\theta_0)\Vert^2}=\sum_{i=1}^{M}\mu_i\mathbf{u}_i\mathbf{u}^H_i,\mu_1\geq\mu_2\geq\ldots\geq\mu_M

\underset{\lambda\rightarrow+\infty}{\rm{lim}}\frac{\vert\mathbf{a}^H(\theta_0)\mathbf{u}_M\vert}{\Vert\mathbf{a}(\theta_0)\Vert}=1

这就是说对于\lambda\rightarrow+\infty,来自\theta_0方向的信号被完全保护起来,但过大的\lambda会像对角加载那样削弱对干扰信号的抑制,实际上\lambda的选择还是如第一条公式所示。而\mathbf{u}_M的方向基本上是接近\mathbf{a}(\theta_0)的,因此把\tilde{\mathbf{R}}的最小的一个特征值变成噪声方差\sigma^2它还是特征值中较小的一个,足以保护SOI。

Reference

[1] A. Kgabbazibasmenj, S. A. Vorobyov and A. Hassanien. Robust Adaptive Beamforming Based on Steering Vector Estimation With as Little as Possible Prior Information. IEEE Trans. Singal Process., vol. 60, no. 6, pp. 2974-2987. (2012)

[2] Y. Hunag, M. Zhou and S. A. Vorobyov. New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation. IEEE Trans. Singal Process., vol. 67, no. 14, pp. 3624-3638. (2019)

[3] L. Chang and C. Yeh. Performance of DMI and Eigenspace-Based Beamformers. IEEE Trans. Singal Process., vol. 40, no. 11, pp. 1336-1347. (1992)

[4] D. Li, Q. Yin, P. Wu and W. Guo. Robust MVDR Beamforming Using the DOA Matrix Decomposition. IEEE-ISAS 2011, pp. 105-110. (2011)

[5] R. Roy and T. Kailath. ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques. IEEE Trans. Singal Process., vol. 37, no. 7, pp. 984-995. (1989)

[6] P. Mu, D. Li, Q. Yin and W. Guo. Robust MVDR beamforming based on covariance matrix reconstruction. Sci. China Inform. Sci., vol. 56, 042303:1-042303:12. (2013)

Log
2023年11月29日 更新[1][2]
2023年11月30日 更新[3]
2023年12月4日  更新[4]
2023年12月6日  更新[6]

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值