总体最小二乘 total least-squared TLS

0 TL; DR

(\mathbf{Y}+\tilde{\mathbf{Y}})_{m\times k}=(\mathbf{X}+\tilde{\mathbf{X}})_{m\times n}\mathbf{A}_{n\times k}在最小化\Vert[\tilde{\mathbf{X}}\;\tilde{\mathbf{Y}}]\Vert ^2_F意义下的最优解,先对合并矩阵做奇异值分解

[\mathbf{X}\;\mathbf{Y}]=\mathbf{U\Sigma}\left[\begin{array}{cc}\mathbf{V}_{pp}&\mathbf{V}_{pq}\\\mathbf{V}_{qp}&\mathbf{V}_{qq}\end{array} \right ]^T

其中\mathbf{V}_{pp}n阶方阵,\mathbf{V}_{qq}k阶方阵,则\mathbf{A}_{\rm{tls}}=-\mathbf{V}_{pq}\mathbf{V}_{qq}^{-1}

[~,~,V] = svd([X Y]);
A_tls = -V(1:n,n+1:end)/V(n+1:end,n+1:end);

1 问题描述

给定一组数据[\mathbf{X}_{m\times n} \mathbf{Y}_{m\times k}],描述这组数据的线性模型可以写成\mathbf{Y}\approx\mathbf{XA}\mathbf{X}的行数要大于\mathbf{X}的秩(m>n),或者说方程数要大于未知数个数,最小二乘只考虑最小化输出\mathbf{Y}的误差

\rm{min}\Vert\tilde{\mathbf{Y}}\Vert^2_F\;\;\rm{s.t.}\;\mathbf{Y}+\tilde{\mathbf{Y}}=\mathbf{XA}

上面的式子一般会写成大家熟悉的形式\rm{min}\Vert\mathbf{Y}-\mathbf{XA}\Vert^2_F,解就是大家喜闻乐见的

\mathbf{A}_{\rm{ls}}=(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}

现在考虑\mathbf{X}也有相当的误差,问题变成

\rm{min}\Vert[\tilde{\mathbf{X}}\;\tilde{\mathbf{Y}} ]\Vert^2_F\;\;\rm{s.t.}\;\mathbf{Y}+\tilde{\mathbf{Y}}=(\mathbf{X}+\tilde{\mathbf{X}})\mathbf{A}

其中\Vert\mathbf{Z}\Vert^2_F\mathbf{Z}的Frobenius范数\Vert\mathbf{Z}\Vert^2_F=\rm{trace}(\mathbf{Z}^T\mathbf{Z})=\sum_{i,j}Z_{ij}^2

约束条件可以改写成

[\mathbf{X}+\tilde{\mathbf{X}},\;\mathbf{Y}+\tilde{\mathbf{Y}}]\left[\begin{array}{c}\mathbf{A}_{n\times k}\\-\mathbf{I}_{k\times k} \end{array} \right ]=\mathbf{0}_{m\times k}

2 奇异值分解

\mathbf{X}的奇异值分解为\mathbf{X}=\mathbf{U\Sigma V}^T

\mathbf{X}_{m\times n}=\left[\begin{array}{cccc}\mathbf{u}_1&\mathbf{u}_2&\ldots&\mathbf{u}_m\end{array}\right]_{m\times m}\left[\begin{array}{cccc}\sigma_1&&&\\&\sigma_2&&\\\ &&\ddots&\\ &&&\sigma_n\\&&&\\&&& \end{array}\right]_{m\times n}\left[\begin{array}{c}\mathbf{v}^T_1\\\mathbf{v}^T_2\\\vdots\\\mathbf{v}^T_n\end{array}\right]_{n\times n}n+k

\mathbf{U},\mathbf{V}是正交矩阵,\mathbf{U}^T\mathbf{U}=\mathbf{I},\mathbf{V}^T\mathbf{V}=\mathbf{I}\sigma_1\geq\sigma_2\geq\ldots\sigma_n\geq0,对于秩为n的矩阵\mathbf{X}\mathbf{\Sigma}最多只有n个不为零的对角元素,因此\mathbf{X}可以写成\mathbf{X}=\sum_{i=1}^n\sigma_i\mathbf{u}_i\mathbf{v}_i^T

在这里引入Eckart-Young定理,\hat{\mathbf{X}}_k=\sum_{i=1}^{k}\sigma_i\mathbf{u}_i\mathbf{v}_i^T

\underset{\mathbf{X}_k,\rm{rank}(\mathbf{X}_k)=k}{\min}\Vert\mathbf{X}-\mathbf{X}_k\Vert^2_F

的最优解,即\hat{\mathbf{X}}_k\mathbf{X}的最优rank-k近似

3 以SVD求解TLS问题

[\mathbf{X}\; \mathbf{Y}]做奇异值分解

[\mathbf{X}\;\mathbf{Y}]\left[\begin{array}{cc}\mathbf{V}_{pp}&\mathbf{V}_{pq}\\\mathbf{V}_{qp}&\mathbf{V}_{qq} \end{array} \right ]=\left[\begin{array}{cc}\mathbf{U}_p&\mathbf{U}_q\end{array} \right ]\left[\begin{array}{cc}\mathbf{\Sigma}_p&\\&\mathbf{\Sigma}_q \end{array} \right ]

[\mathbf{X}\;\mathbf{Y}]\left[\begin{array}{c}\mathbf{V}_{pq}\\\mathbf{V}_{qq} \end{array} \right ]=\mathbf{U}_q\mathbf{\Sigma}_q

其中\mathbf{V}_{pp},\mathbf{\Sigma}_pn阶方阵,\mathbf{V}_{qq},\mathbf{\Sigma}_qk阶方阵,\mathbf{U}_pm\times n矩阵,\mathbf{U}_qm\times k矩阵,留意到\mathbf{\Sigma}只有n+k行,这是因为[\mathbf{X}\; \mathbf{Y}]最多只有n+k个不为零的奇异值,n+k行后面的可以省略。现在定义[\mathbf{X}+\tilde{\mathbf{X}}\;\mathbf{Y}+\tilde{\mathbf{Y}}][\mathbf{X}\; \mathbf{Y}]的rank-k近似

[\mathbf{X}+\tilde{\mathbf{X}}\;\mathbf{Y}+\tilde{\mathbf{Y}}]\left[\begin{array}{cc}\mathbf{V}_{pp}&\mathbf{V}_{pq}\\\mathbf{V}_{qp}&\mathbf{V}_{qq} \end{array} \right ]=\left[\begin{array}{cc}\mathbf{U}_p&\mathbf{U}_q\end{array} \right ]\left[\begin{array}{cc}\mathbf{\Sigma}_p&\\&\mathbf{0}_{k\times k} \end{array} \right ]

对比可得

[\tilde{\mathbf{X}}\;\tilde{\mathbf{Y}}]\left[\begin{array}{cc}\mathbf{V}_{pp}&\mathbf{V}_{pq}\\\mathbf{V}_{qp}&\mathbf{V}_{qq} \end{array} \right ]=\left[\begin{array}{cc}\mathbf{U}_p&\mathbf{U}_q\end{array} \right ]\left[\begin{array}{cc}\mathbf{0}_{n\times n}&\\&-\mathbf{\Sigma}_q \end{array} \right ]

[\tilde{\mathbf{X}}\;\tilde{\mathbf{Y}}]\left[\begin{array}{c}\mathbf{V}_{pq}\\\mathbf{V}_{qq} \end{array} \right ]=-\mathbf{U}_q\mathbf{\Sigma}_q

即得

[\mathbf{X}+\tilde{\mathbf{X}}\;\mathbf{Y}+\tilde{\mathbf{Y}}]\left[\begin{array}{c}\mathbf{V}_{pq}\\\mathbf{V}_{qq} \end{array} \right ]=\mathbf{0}_{m\times k}

\mathbf{A}_{\rm{tls}}=-\mathbf{V}_{pq}\mathbf{V}_{qq}^{-1}

Reference

[1] https://people.duke.edu/~hpgavin/SystemID/CourseNotes/TotalLeastSquares.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值