最长上升子序列(LIS)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最长上升子序列(最长递增子序列,LIS)

长度问题

给定长度为 n n n的序列 v v v,求此序列中严格递增(上升)的子序列长度最大值(子序列可由原序列中不连续的元素构成)

朴素DP( O ( n 2 ) O(n^2) O(n2))

闫氏DP分析法
  • 状态表示:

    • 集合 d p dp dp:所有满足递增条件的元素集
    • 属性: M a x Max Max d p [ i ] dp[i] dp[i]表示以 i i i结尾的最长递增子序列长度, i n i t ( d p ) = 1 init(dp)=1 init(dp)=1
  • 状态计算:

    • i i i为当前工作区间尾指针, j j j为当前工作区间工作指针
    • i i i不可选: v [ i ] ≤ v [ j ] v[i]\le v[j] v[i]v[j],不满足递增条件,不选
    • i i i可选: v [ i ] > v [ j ] v[i]>v[j] v[i]>v[j]
      • i i i d p [ i ] dp[i] dp[i]长度继承自 d p [ j ] dp[j] dp[j] d p [ i ] = d p [ j ] + 1 dp[i]=dp[j]+1 dp[i]=dp[j]+1
      • 不选 i i i:该子序列 [ [ 1 ] , [ . . . ] , [ j ] ] [[1],[...],[j]] [[1],[...],[j]]可能是一个非最优子序列或最优子序列的子序列, d p [ i ] = d p [ i ] dp[i]=dp[i] dp[i]=dp[i]
  • 转移方程式: d p [ i ] = m a x ( d p [ i ] , d p [ j ] + 1 ) dp[i]=max(dp[i],dp[j]+1) dp[i]=max(dp[i],dp[j]+1)

extern vector<int>v,dp;
int lis(){
    fill(dp.begin(),dp.end(),1);
	for(int i=0;i<v.size();i++)
        for(int j=0;j<i;j++)
            if(v[i]>v[j])//v[i]可选
                dp[i]=max(dp[i],dp[j]+1);
    return *max_element(dp.begin(),dp.end());
}

贪心(O( n log ⁡ 2 n n\log_2n nlog2n))

思路:设原序列 v v v,答案序列 a n s ans ans,当前工作指针为 i i i。初始化 a n s [ 0 ] = v [ 0 ] ans[0]=v[0] ans[0]=v[0],遍历原序列 v v v

  • v [ i ] v[i] v[i]> a n s . b a c k ( ) ans.back() ans.back(),则将 v [ i ] v[i] v[i]加入 a n s ans ans末尾
  • 否则,用 v [ i ] v[i] v[i]替换 a n s ans ans中首个 ≥ v [ i ] \ge v[i] v[i]的元素。由于 a n s ans ans始终有序,故可采用二分加速
extern int n;
extern vector<int>v,ans;
void lis(){
    ans.push_back(v[0]);
    for(auto i:v){
        if(i>ans.back()]) ans.push_back(i);
        else ans[distance(ans.begin(),lower_bound(ans.begin(),ans.end(),i))]=i;
    }
    cout<<ans.size()<<endl;
}

LCS求解LIS( O ( n 2 ) O(n^2) O(n2),不常用)

思路:将原序列 v v v排序得到序列 v ′ v' v,两序列的 L C S LCS LCS也为有序,即为原序列 v v v L I S LIS LIS。此方法存在缺陷,仅适用于原序列 v v v不存在重复元素的情况,否则会出现错误。下面仅以二维 d p dp dp数组的 L C S LCS LCS举例

extern int n,v1[MAX],v2[MAX],dp[MAX][MAX];
void lcs(){
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(v1[i-1]==v2[j-1]) dp[i][j]=dp[i-1][j-1]+1;
            else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    cout<<dp[n][n]<<endl;
}

最长连续上升子序列

转移方程式: d p [ i ] = d p [ i − 1 ] + 1 dp[i]=dp[i-1]+1 dp[i]=dp[i1]+1

extern vector<int>v,dp;
void lcis(){
    fill(dp.begin(),dp.end(),1);
    for(int i=1;i<v.size();i++)
        if(v[i]>v[i-1])
            dp[i]=dp[i-1]+1;
    return *max_element(dp.begin(),dp.end());
}

复杂度 O ( n ) O(n) O(n)

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值