最长上升子序列 LIS

【题目描述】

给定N个数,求这N个数的最长上升子序列的长度

【样例输入】

7

2 5 3 4 1 7 6

【样例输出】

4

什么是最长上升子序列? 就是给你一个序列,请你在其中求出一段不断严格上升的部分,它不一定要连续。

就像这样:2,3,4,7和2,3,4,6就是序列2 5 3 4 1 7 6的两种选取方案。最长的长度是4.

O(N^2):  用 dp[i] 表示以 i 项为结尾的最长上升子序列,用 a[i] 表示第 i 项的值,如果有 j < i && a[j] < a[i] ,那么把第 i 项接在第 j 项的后面构成的子序列长度为 dp[i] = dp[j] + 1. 

要使 dp[i] 为以 i 为结尾的最长上升子序列,需要枚举所有满足条件的 j ,所以状态转移方程为

                                    dp[i] = max\left \{ dp[i] , dp[j] + 1\right \}

代码如下:

package Texun_12;

import java.util.Scanner;

public class L16 {

	public static void main(String[] args) {
		// TODO Auto-generated method stub

		Scanner sc = new Scanner(System.in);
		int n = sc.nextInt();
		int[] a = new int[n + 5];
		int[] dp = new int[n + 5];
		for (int i = 1; i <= n; i++)
			a[i] = sc.nextInt();
		int ans=0;
		for (int i = 1; i <= n; i++) {
			dp[i]=1;
			for (int j = 1; j < i; j++) {
				if (a[j] < a[i]) {
					dp[i] = Math.max(dp[i], dp[j] + 1);
				}
			}
			ans=Math.max(ans, dp[i]);
		}
		System.out.println(ans);
	}

}

O(nlogn):https://blog.csdn.net/acm513828825/article/details/77948217,这篇文章感觉很好。

代码如下:(计蒜客版本)(更精炼)

import java.util.*;
import java.math.*;

public class Main {
	public static final int N = (int)1e5 + 9;
	public static int n = 0;
	public static int[] f = new int[N];
	public static int[] a = new int[N];

	public static int find(int l, int r, int x) {
		while (l < r) {
			int mid = (l + r) / 2;
			if (f[mid] < x) {
				l = mid + 1;
			} else {
				r = mid;
			}
		}
		return l;
	}

	public static int lis() {
		int len = 0;
		for (int i = 0; i < n; i++) {
			int k=find(0,len,a[i]);
			f[k] = a[i];
			if (k == len) {
				len++;
			}
		}
		return len;
	}

	public static void main(String[] args) {
		Scanner cin = new Scanner(System.in);
		n = cin.nextInt();
		for (int i = 0; i < n; i++) {
			a[i] = cin.nextInt();
		}
		System.out.println(lis());
	}
}

代码二:

package Texun_12;

import java.util.Scanner;

public class L17 {

	static int n;
	static int[] a = new int[1000];
	static int[] f = new int[1000];

	public static int find(int l, int r, int x) {
		while (l < r) {
			int mid = (l + r) / 2;
			if (f[mid] < x)
				l = mid + 1;
			else
				r = mid;
		}
		return l;
	}

	public static int LIS() {
		int len=0,k;
		for(int i=1;i<=n;i++) {
			if(a[i]>f[len]) {
				f[++len]=a[i];
			}else {
				k=find(1,len,a[i]);
				f[k]=a[i];
			}
		}
		return len;
	}

	public static void main(String[] args) {
		// TODO Auto-generated method stub

		Scanner sc = new Scanner(System.in);
		n = sc.nextInt();
		for (int i = 1; i <= n; i++)
			a[i] = sc.nextInt();
		System.out.println(LIS());
	}

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值