[题解]2024CCPC重庆站-小 C 的神秘图形

  • Sources:K - 小 C 的神秘图形
  • Abstract:给定正整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1\le n\le 10^5) n(1n105),三进制字符串 n 1 , n 2 ( ∣ n 1 ∣ = ∣ n 2 ∣ = n ) n_1,n_2(|n_1|=|n_2|=n) n1,n2(n1=n2=n),按如下方法构造 3 n 3^n 3n 0 / 1 0/1 0/1 方阵 A n A_n An(行列编号均从 0 0 0 开始),回答 A n ( n 1 , n 2 ) A_n(n_1,n_2) An(n1,n2)的值: A n ( i , j ) = { 1 , n = 1 A n − 1 ( i m o d    3 n − 1 , j m o d    3 n − 1 ) , n ≥ 2 } 若 3 n − 1 ≤ i < 2 × 3 n − 1 , 或 3 n − 1 ≤ j < 2 × 3 n − 1 0 , otherwise A_n(i,j)=\begin{cases}\begin{rcases}1, & n=1\\ A_{n-1}(i \mod 3^{n-1},j\mod 3^{n-1}),& n\ge2\end{rcases}若3^{n-1}\le i<2\times 3^{n-1},或3^{n-1}\le j<2\times 3^{n-1}\\0,\kern143pt \text{otherwise} \end{cases} An(i,j)= 1,An1(imod3n1,jmod3n1),n=1n2}3n1i<2×3n1,3n1j<2×3n10,otherwise
  • Keywords:数学,思维(签到题)
  • Solution:考虑取模的进制本质。在三进制情形下对 3 n − 1 3^{n-1} 3n1取模,本质上为取其长度为 n n n 的后缀。由于 i , j i,j i,j 一定与 n 1 , n 2 n_1,n_2 n1,n2 等长,因此仅需检查 i , j i,j i,j 首数字是否为 1 1 1 即可。由于矩阵本身即为递归构造,因此天然适合递归实现,也可采用递推实现。下面采取递推实现。
  • Code:
#include<bits/stdc++.h>

using namespace std;
using ll=long long;

int n;
string n1,n2;

int solve(){
    for(int i=0;i<n;){
        if(n1[i]=='1'||n2[i]=='1'){
            if(i==n-1) return 1;
            else i++;
        }else return 0;
    }
}
int main(){
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    cin>>n>>n1>>n2;
    cout<<solve()<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值