T4
题目描述:
子树的权值为子树中所有节点权值乘积的因子数,求所有子树的权值和,取模10^9+7
输入:
第一行为:n
第二行为:每个节点的权值
后n-1行为两点的连接
3
1 2 3
1 2
1 3
输出:8
思路:
做这种题,我的思路都是先找叶子节点,然后从叶子节点往根节点上去遍历。原因是父节点需要用到子节点的信息,所以应该先计算子节点,再去计算父节点。可以用一个小技巧去找到所有的叶子节点,就是没有指向其他任何节点的节点,也就是在边 edges 数组中没有在edges[i][0]种出现过的节点。
找到所有的叶子节点之后,依次遍历每一条从叶子节点到根节点的路径。其中需要使用used数组去重,避免某个节点的权值被乘了两次;
最后使用一个 score 数组去记录遍历到每一个节点时的值;
以下代码是在考试结束之后才调出来的,未验证正确性,有大佬看到错误还请告知!
#include <iostream>
#include <vector>
#include <cmath>
#include <unordered_set>
#include <unordered_map>
using namespace std;
int yinzi_num(int n) {
int res = 0;
for (int i = 1; i <= sqrt(n); ++i) {
if (n % i == 0) {
res += (i == n / i) ? 1 : 2;
res %= 1000000007;
}
}
return res;
}
int main() {
int n;
cin >> n;
/* 每个节点权值 */
vector<int> nums(n);
for (int i = 0; i < n; ++i) {
cin >> nums[i];
}
/* n - 1 条边 */
vector<vector<int>> edges(n - 1, vector<int>(2));
for (int i = 0; i < n - 1; ++i) {
cin >> edges[i][0] >> edges[i][1];
}
/* 寻找叶子节点 */
vector<int> yezi;
unordered_set<int> hashset;
for (auto v : edges) {
hashset.insert(v[0]);
}
for (int i = 1; i <= n; ++i) {
if (hashset.find(i) == hashset.end()) yezi.push_back(i);
}
/* 记录每个节点的父节点 */
unordered_map<int, int> hashmap;
hashmap[1] = 0;
for (auto v : edges) {
hashmap[v[1]] = v[0];
}
vector<int> score(n + 1, 1);
vector<bool> used(n + 1, false);
for (int i = 0; i < yezi.size(); ++i) {
int sum = 1;
int node = yezi[i];
while (node != 0) {
sum *= (used[node] ? 1 : nums[node - 1]);
score[node] *= sum;
used[node] = true;
node = hashmap[node];
}
}
int res = 0;
for (int i = 1; i <= n; ++i) {
res += yinzi_num(score[i]);
res %= 1000000007;
}
cout << res << endl;
return 0;
}