秒懂!何凯明Resnet

何凯明博士的深度残差学习框架让训练深度神经网络变得简单,解决了深度网络层数增加导致的精度下降问题。Resnet在ILSVRC和COCO 2015比赛中表现出色,152层网络取得分类任务3.57%的错误率。Resnet通过残差块解决了优化难题,允许网络逐层深入学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

雷锋网注:何凯明博士,2007年清华大学毕业之后开始在微软亚洲研究院(MSRA)实习,2011年香港中文大学博士毕业后正式加入MSRA,目前在Facebook AI Research (FAIR)实验室担任研究科学家。曾以第一作者身份拿过两次CVPR最佳论文奖(2009和2016)——其中2016年CVPR最佳论文为图像识别中的深度残差学习(Deep Residual Learning for Image Recognition),本文为何凯明博士在ICML2016上的tutorial演讲以及相关PPT整理。相比学术论文,他在演讲PPT中深入浅出地描述了深度残差学习框架,大幅降低了训练更深层次神经网络的难度,也使准确率得到显著提升。

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

 

深度残差网络——让深度学习变得超级深

ICML 2016 tutorial

何凯明——Facebook AI Research(8月加入)

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

概览

  • 介绍

  • 背景

从浅到深

  • 深度残差网络

从10层到100层

从100层到1000层

  • 应用

  • Q & A

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

| 介绍部分

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

介绍——深度残差网络(Resnet)

  • “用于图像识别的深度残差学习” CVPR2016

  • 一个能够用来训练“非常深”的深度网络又十分简洁的框架

  • 在以下几个领域中都能实现当下最好的表现

图像分类

对象检测

语义分割

等等

ç§æï¼ä½å¯æç深度æ®å·®ç½ç»PPTæ¯è¿æ ·ç|ICML2016 tutorial

Resnet在ILSVRC 和COCO 2015上的表现

在五个主要任务轨迹中都获得了第一名的成绩

ImageNet分类任务:“超级深”的152层网络

ImageNet检测任务:超过第二名16%

ImageNet定位任务:超过第二名27%

COCO检测任务:超过第二名11%

COCO分割任务:超过第二名12%

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值