数据挖掘简答题

本文涉及数据挖掘的面试题目,包括机器学习算法介绍、K近邻算法优缺点分析、自然语言处理的文本预处理步骤、数据挖掘的目标与监督学习与无监督学习的应用,以及K-Means算法过程的详细描述。此外,还探讨了人工智能对未来社会可能带来的影响及其利弊。
摘要由CSDN通过智能技术生成

1. 请列举你所学习过一些机器学习的算法?简要描述下其原理。

2. 请分析下K近邻算法的优缺点?

3. 自然语言典型的文本预处理步聚。

4. 数据挖掘的两大目标分为预测和描述,监督学习和无监督学习分别对应哪类目标?

   监督学习和无监督学习的定义是什么?

   分别从监督类学习和无监督类学习中找一类算法的实例应用进行举例说明。

5. 用文字的形式描述K-Means算法的过程?

6. 你对于人工智能的未来怎么看?请谈谈它可能对人类社会造成哪些利弊?





 

1. **请列举你所学习过一些机器学习的算法?简要描述下其原理。**

   监督学习和无监督学习。

   监督学习:可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。

   无监督学习:可以由输入数据中学到或建立一个模型,并依此模式推测新的结果。输入数据是由输入特征值所组成。

2. **请分析下K近邻算法的优缺点?**

   优点:简单,易于理解,易于实现,无需估计参数,无需训练

   缺点:每次分类都会进行一次全局计算,数据量大时,计算开销大;必须指定K值,K值选择不当则分类精度不能保证;样本不均衡,预测偏差比较大

3. **自然语言典

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值