BZOJ 1670 [Usaco2006 Oct]Building the Moat护城河的挖掘 凸包

题目大意:给出n个点,求包围所有点的多边形的最小周长。

裸凸包,练手题。

注意极角排序从下标为2的位置开始排…

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define N 5005
using namespace std;
inline int sq(int x) { return x*x; }
struct Point {
    int x,y;
    Point(int _x=0,int _y=0):x(_x),y(_y) {}
    void scan() {scanf("%d%d",&x,&y);}
    Point operator + (const Point& rhs) const { return Point(x+rhs.x,y+rhs.y); }
    Point operator - (const Point& rhs) const { return Point(x-rhs.x,y-rhs.y); }
    int operator * (const Point& rhs) const { return x*rhs.y-y*rhs.x; }
    int operator ^ (const Point& rhs) const { return x*rhs.x+y*rhs.y; }
    int operator | (const Point& rhs) const { return sq(x-rhs.x)+sq(y-rhs.y); }
    bool operator < (const Point& rhs) const { return x<rhs.x || x==rhs.x && y<rhs.y; }
}p[N],q[N];
int n,top;
bool cmp(const Point& lhs,const Point& rhs) {
    int tmp=(lhs-p[1])*(rhs-p[1]);
    if(tmp) return tmp>0;
    return (lhs|p[1])<(rhs|p[1]);
}
void Graham() {
    int tmp=1;
    for(int i=2;i<=n;i++)
        if(p[i]<p[tmp])
            tmp=i;
    if(tmp!=1) swap(p[tmp],p[1]);
    sort(p+2,p+n+1,cmp);
    q[++top]=p[1];
    for(int i=2;i<=n;i++) {
        while(top>1 && (q[top]-q[top-1])*(p[i]-q[top-1])<=0) top--;
        q[++top]=p[i];
    }
    return ;
}
double calc_ans() {
    q[top+1]=q[1];
    double ans=0;
    for(int i=1;i<=top;i++) ans+=sqrt(q[i]|q[i+1]);
    return ans;
}
int main() {
    scanf("%d",&n);
    for(int i=1;i<=n;i++) p[i].scan();
    Graham();
    printf("%.2f\n",calc_ans());
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值