bzoj1670[Usaco2006 Oct]Building the Moat护城河的挖掘 凸包(Andrew)

7 篇文章 0 订阅
1 篇文章 0 订阅
这篇博客详细介绍了如何解决bzoj1670问题,即‘Building the Moat’。文章通过Andrew算法探讨了如何在计算几何中求解凸包,并强调在计算相邻点之间的距离时,必须考虑最后一个点与第一个点的连接情况。
摘要由CSDN通过智能技术生成

裸的凸包,求出所有点以后直接相邻点求长度就可以了,注意不要忘记最后一个和第一个的。。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps=1e-7;
const int maxn=100005;
int n;
struct point{
    double x,y;
    point() {}
    point(double a,double b):x(a),y(b) {}
    bool operator<(const point&b)const{
        if (x<b.x) return 1;
        if (x>b.x) return 0;
        return y<b.y;
    }
    point operator-(const point&b) {return point(x-b.x,y-b.y);}
}a[maxn],stk[maxn];
typedef point vec;
int dcmp(double x){
    if (fabs(x)<=eps) return 0;
    return x>0?1:-1;
}
double getdst(point a,point b){
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
double cross(vec a,vec b){
    return a.x*b.y-a.y*b.x;
}
int Andrew(){
    sort(a+1,a+1+n);
    int len=0;
    for (int i=1;i<=n;i++){
        while (len>1&&dcmp(cross(stk[len]-stk[len-1],a[i]-stk[len-1]))==-1) len--;
        stk[++len]=a[i];
    }
    int k=len;
    for (int i=n-1;i>=1;i--){
        while (len>k&&dcmp(cross(stk[len]-stk[len-1],a[i]-stk[len-1]))==-1) len--;
        stk[++len]=a[i];
    }
    return len;
}
int main(){
    scanf("%d",&n);
        for (int i=1;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y);
        int t=Andrew();
        double ans=0;
        for (int i=1;i<t;i++) ans+=getdst(stk[i],stk[i+1]);
        //for(int i=1;i<=t;i++)printf("%.1lf %.1lf\n",stk[i].x,stk[i].y);
        printf("%.2lf\n",n==2?ans/2:ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值