题目:https://www.acwing.com/problem/content/1300/
题意:中国剩余定理
x = b1 (mod a1)
x = b2 (mod a2)
x = b3 (mod a3)
…
x = bi (mod ai)
求最小的满足x的解
解析:中国剩余定理: M是所有ai的乘积, mi是M / ai(出自己之外的所有数的乘积)
ti是关于ai的逆元。 则答案 = SUM(bi * ti * mi);
上边的就是:ti * mi 恒等于 1 (mod ai) ⇒ ti * mi + ai * x = 1 (用扩展欧几里得求 解)
不大很懂逆元咋求得:https://blog.csdn.net/destiny1507/article/details/81751168大佬的
代码:
#include <bits/stdc++.h>
#define lowbit(x) x&(-x)
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const int N = 1e7 + 20;
int a[12], b[12];
inline void Ex_gcd(ll a, ll b, ll &x, ll &y)
{
if (b == 0) x = 1, y = 0;
else {
Ex_gcd(b, a % b, y, x);
y -= a / b * x;
}
}
int main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
ll M = 1;
int n; cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i] >> b[i], M *= a[i];
ll ans = 0;
for (int i = 1; i <= n; i++) {
ll mi = M / a[i];
ll ti, x;
Ex_gcd(mi, a[i], ti, x);
ans += b[i] * mi * ti;
}
cout << (ans % M + M) % M << endl;
return 0;
}