应用密码学重点考点总结(二)

1.

明:
  • 设讨论为X = {x0, x1, · · · , xm1}
  • 便0(m-1)为Zm={0,1,,m1}
  • X = {a, b, c, · · · , z}为Z26={0,1,,25}

  • Z26 整数,km,到密文c
  • 17% 18%太高,

2.

x = { x 1 , x 2 , · · · , x n },K = { σ 1 , σ 2 , · · · , σ n } 换,加密 y = ( y 1 , y 2 , · · · , y n )
E k ( x ) = ( σ 1 ( x 1 ) , σ 2 ( x 2 ) , · · · , σ n ( x n )) = ( y 1 , y 2 , · · · , y n ) = y
K

(1)

又可分为 码。
  • 于一个密密中一个换为密
①单
σ 1 = σ 2 =· · ·=σn,如: 码、仿射密码
②多表
(Vernam) (rotormachine)

shift cipher/

26 义在Z 26
分别
c = E k ( m ) = ( m + k )( mod q ) , (0 k < q )           m = D k ( c ) = ( c k )( mod q )
k=0 换。显然 q。
, q 26 c = E k ( m ) = ( m + k )( mod 26)
k 0, ,25 25 要尝试 25

 ②-Caesar Cipher

  • 密钥k0,,25-加法密
  • k, x, y ∈ {0, 1, ..., 25}
  • Encryption: y x + k mod 26
  • Decryption: x y - k mod 26

Example
  • k = 7
  • Plaintext = ATTACK = 0, 19, 19, 0, 2, 10
  • Ciphertext = haahr = 7, 0, 0, 7, 17
  • 26, 19 + 7 = 26 0 mod 26

仿/仿-Affiffiffine Cipher

  • 仿密。
  • 仿c = Ea,b(m) = am + b (mod 26)
  • 仿m = Da,b(c) = a1(c b) (mod 26)
  • (a,b)a, b Z26gcd(a,26) = 1
  • 仿目的

仿例:

(a,b) = (7, 3) gcd(7,26) = 1
c = 7m + 3 ( mod 26)
m= 7 1 ( c 3)( mod 26)
”hot” 仿 果”hot” 对 7 14 19
c(h)= 7 7 + 3 ( mod 26) = 0 a
c(o)= 7 14 + 3 ( mod 26) = 23 x
c(t)= 7 1 9 + 3 ( mod 26) = 6 g
仿 ”axg”
7 mod 26 15 ,
仿 ?
gcd ( a , 26) = 1 , a ∈ { 1 , 3 , 5 , 7 , 9 , 11 , 15 , 17 , 19 , 21 , 23 , 25 }
12*26=312
仿 使 字母频
  • 字母,Hill码,Playfair密码。(即用多个单表,明文字母用不同的密文字母代换。
品。

①维(Vigenere Cipher) 

个代 行代换 ,
K = k 0 k 1 . . . k d 1,d是 重复 度匹配。
ci = E p i = p i + k i mod d ( mod 26)
pi = D c i = c i k i mod d ( mod 26)
Vigenere d 码。
  • 一个
  • 一个组经键词的
  • dVigenered密码的
  • Vigenere cipher度:Kasiski test(卡西),Friedman test

Playfair

  • 为一个,Playfair密码
  • 5×5),余位入其它字
  • IJPQ
换描
两个一 X 加到 一个 后剩下一个 X
balloon ba l x lo on
母代换
也不 使 为一个长
逆。如: ballon ibsupmna

Hill

思想 n Z 26 线 每次替换 n
一个 n n 对密
26 解密。
Ci = KM i mod 26 , i = 1 , 2 , . . . , j
Mi = K 1 C i mod 26 , i = 1 , 2 , . . . , j

 Hill例:

(2)

(Permutation cipher) Transposition cipher) 明文字 。 
法描述
b 整数
K { 1 , 2 , . . . , b } (1 , 2 , . . . , b )
( x 1 , x 2 , . . . , x b ), ( ) σ = ( σ (1) , σ (2) , . . . , σ ( b )) 加密变
E σ ( x 1 , x 2 , . . . , x b ) = ( x σ (1) , x σ (2) , . . . , x σ ( b ) )
σ 1 σ
D σ 1 ( y 1 , y 2 , . . . , y b ) = ( y σ 1 (1) , y σ 1 (2) , . . . , y σ 1 ( b )

①转轮Rotor Machines

, 来构 造。
:
一个代
线
一个
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值