题目:
给定一个只包含整数的有序数组,每个元素都会出现两次,唯有一个数只会出现一次,找出这个数。
示例 1:
输入: [1,1,2,3,3,4,4,8,8]
输出: 2
示例 2:
输入: [3,3,7,7,10,11,11]
输出: 10
注意: 您的方案应该在 O(log n)时间复杂度和 O(1)空间复杂度中运行。
思路:
在二分查找模板上进行修改。
记index为Single Element在数组中的位置,在index之后,数组中原来成对的状态被改变。
当mid为偶数时,
如果mid+1<index,那么nums[mid]==nums[mid+1],说明index所在的位置为[m+2,r],此时令l=mid+2;
如果mid+1>=index,那么nums[mid]!=nums[mid+1],说明index所在的位置为[l,m],此时令r=mid;
注!!!:mid必须为偶数,如果mid为奇数,则减1变成偶数!!!
注:因为r的赋值表达式为r=mid,所以循环条件也就只能为l<r。
二分法模板:
//x:待查找的元素, n:数组集合大小, num数组单调递增
int low=0,high=n,mid,res = -1; //low:集合下界 high:集合上节
while(low<=high)
{
mid=(low+high)/2; //mid:将集合分割为两部分
if(num[mid]==x) //查找到符合元素x
{
res = mid;
break;
}
else if(num[mid]<x)//x在右边部分,调整集合下界
low=mid+1;
else //x在左边部分,调整集合上界
high=mid-1;
}//若未找到x,则res = -1
执行用时和内存消耗:
解题代码:
//只需提交singleNonDuplicate()内部代码即可,main函数用来测试。
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int singleNonDuplicate(vector<int>& nums) {
int l = 0, r = nums.size() - 1, mid;
while (l < r)
{
mid = (l + r) / 2;
if (mid % 2 == 1)
mid--;
if (nums[mid] == nums[mid + 1])
l = mid + 2;
else
r = mid;
}
return nums[l];
}
int main() {
int n,tp;
vector<int> m;
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> tp;
m.push_back(tp);
}
cout << singleNonDuplicate(m);
return 0;
}