代码随想录算法训练营第五十七天 | 回文

文章讲述了使用动态规划方法解决LeetCode中的两道题目——647.回文子串和516.最长回文子序列。重点在于如何定义dp数组,确定递推公式和初始化,以及正确的遍历顺序。对于647题,关键在于识别子串是否回文取决于中间部分;516题则要考虑子序列不连续的特点,寻找最长的回文子序列。
摘要由CSDN通过智能技术生成

647. 回文子串

文档讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串_哔哩哔哩_bilibili

状态:不会做。

思路

  1. 确定dp数组(dp table)以及下标的含义

    本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

    dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。所以我们要看回文串的性质。 如图:

    在这里插入图片描述

    在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

    那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

    所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

    布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  2. 确定递推公式

    整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

    当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

    当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

    • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
    • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
    • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

    递归公式如下,

    if (s[i] == s[j]) {
        if (j - i <= 1) { // 情况一 和 情况二
            result++;
            dp[i][j] = true;
        } else if (dp[i + 1][j - 1]) { // 情况三
            result++;
            dp[i][j] = true;
        }
    }
    

    result就是统计回文子串的数量。

    注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  3. dp数组如何初始化

    dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

    所以dp[i][j]初始化为false。

  4. 确定遍历顺序

    首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。dp[i + 1][j - 1]dp[i][j]的左下角。

    所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

    有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

    注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

代码

class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
        int result = 0;
        for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

516.最长回文子序列

文档讲解:代码随想录 (programmercarl.com)

视频讲解:动态规划再显神通,LeetCode:516.最长回文子序列_哔哩哔哩_bilibili

状态:不会做。

思路

回文子串是要连续的,回文子序列可不是连续的!

  1. 确定dp数组(dp table)以及下标的含义

    dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  2. 确定递推公式

    如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;如图:

    在这里插入图片描述

    如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

    加入s[j]的回文子序列长度为dp[i + 1][j]

    加入s[i]的回文子序列长度为dp[i][j - 1]

    那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

    在这里插入图片描述

    代码如下

    if (s[i] == s[j]) {
        dp[i][j] = dp[i + 1][j - 1] + 2;
    } else {
        dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
    }
    
  3. dp数组如何初始化

    首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

    所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

    其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

    vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
    for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
    
  4. 确定遍历顺序

    从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1]dp[i + 1][j]dp[i][j - 1],如图:

    在这里插入图片描述

    所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

    j的话,可以正常从左向右遍历。

    for (int i = s.size() - 1; i >= 0; i--) {
        for (int j = i + 1; j < s.size(); j++) {
            if (s[i] == s[j]) {
                dp[i][j] = dp[i + 1][j - 1] + 2;
            } else {
                dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
            }
        }
    }
    

代码

class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][s.size() - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值