高数习题9.4

  1. 证明下列函数组线性无关:
    (1) e λ x , x e λ x ; e^{\lambda x},xe^{\lambda x}; eλx,xeλx;(2) c o s β x , s i n β x ; cos\beta x,sin\beta x; cosβx,sinβx;(3) e α x c o s β x , e α x s i n β x e^{\alpha x}cos\beta x,e^{\alpha x}sin\beta x eαxcosβx,eαxsinβx
    证明:
    (1)
    W = ∣ e λ x x e λ x λ e λ x ( 1 + λ x ) e λ x ∣ = e 2 λ x ≠ 0 W=\begin{vmatrix} e^{\lambda x}&xe^{\lambda x}\\ \lambda e^{\lambda x}&(1+\lambda x)e^{\lambda x}\\ \end{vmatrix}=e^{2\lambda x}\neq0 W= eλxλeλxxeλx(1+λx)eλx =e2λx=0
    因此线性无关。
    (2)
    W = ∣ c o s β x s i n β x − β s i n β x β c o s β x ∣ = β ≠ 0 W=\begin{vmatrix} cos\beta x&sin\beta x\\ -\beta sin\beta x&\beta cos\beta x\\ \end{vmatrix}=\beta\neq0 W= cosβxβsinβxsinβxβcosβx =β=0
    因此线性无关。
    (3)
    W = ∣ e α x c o s β x e α x s i n β x ( α c o s β x − β s i n β x ) e α x ( α s i n β x + β c o s β x ) e α x ∣ = β e 2 α x ≠ 0 W=\begin{vmatrix} e^{\alpha x}cos\beta x&e^{\alpha x}sin\beta x\\ (\alpha cos\beta x-\beta sin\beta x)e^{\alpha x}&(\alpha sin\beta x+\beta cos\beta x)e^{\alpha x}\\ \end{vmatrix}=\beta e^{2\alpha x}\neq0 W= eαxcosβx(αcosβxβsinβx)eαxeαxsinβx(αsinβx+βcosβx)eαx =βe2αx=0
    因此线性无关。
  2. φ 1 ( x ) , φ 2 ( x ) \varphi_1(x),\varphi_2(x) φ1(x),φ2(x)是微分方程 y ′ ′ + q ( x ) y = 0 y''+q(x)y=0 y′′+q(x)y=0的任意两个解,其中q(x)在(a,b)上连续.证明: φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x)的朗斯基行列式 W ( x ) = 常数 , x ∈ ( a , b ) W(x)=常数,x\in(a,b) W(x)=常数,x(a,b).
    证明:
    W = ∣ φ 1 ( x ) φ 2 ( x ) φ 1 ′ ( x ) φ 2 ′ ( x ) ∣ = φ 1 ( x ) φ 2 ′ ( x ) − φ 2 ( x ) φ 1 ′ ( x ) W ′ = φ 1 ′ ( x ) φ 2 ′ ( x ) + φ 1 ( x ) φ 2 ′ ′ ( x ) − φ 2 ′ ( x ) φ 1 ′ ( x ) − φ 2 ( x ) φ 1 ′ ′ ( x ) W ′ = φ 1 ′ ( x ) φ 2 ′ ( x ) + φ 1 ( x ) ( − q ( x ) φ 2 ( x ) ) − φ 2 ′ ( x ) φ 1 ′ ( x ) − φ 2 ( x ) ( − q ( x ) φ 1 ( x ) ) = 0 W = C W=\begin{vmatrix} \varphi_1(x)&\varphi_2(x)\\ \varphi_1'(x)&\varphi_2'(x)\\ \end{vmatrix}=\varphi_1(x)\varphi_2'(x)-\varphi_2(x)\varphi_1'(x)\\ W'=\varphi_1'(x)\varphi_2'(x)+\varphi_1(x)\varphi_2''(x)-\varphi_2'(x)\varphi_1'(x)-\varphi_2(x)\varphi_1''(x)\\ W'=\varphi_1'(x)\varphi_2'(x)+\varphi_1(x)(-q(x)\varphi_2(x))-\varphi_2'(x)\varphi_1'(x)-\varphi_2(x)(-q(x)\varphi_1(x))=0\\ W=C W= φ1(x)φ1(x)φ2(x)φ2(x) =φ1(x)φ2(x)φ2(x)φ1(x)W=φ1(x)φ2(x)+φ1(x)φ2′′(x)φ2(x)φ1(x)φ2(x)φ1′′(x)W=φ1(x)φ2(x)+φ1(x)(q(x)φ2(x))φ2(x)φ1(x)φ2(x)(q(x)φ1(x))=0W=C
  3. y = φ ( x ) y=\varphi(x) y=φ(x)是线性齐次微分方程的一个非零解,若有 x 0 ∈ ( a , b ) x_0\in(a,b) x0(a,b)使 φ ( x 0 ) = 0 \varphi(x_0)=0 φ(x0)=0,证明: φ ′ ( x 0 ) ≠ 0 \varphi'(x_0)\neq0 φ(x0)=0.
    证明:
    设该线性齐次微分方程另一个解为 φ 1 \varphi_1 φ1,且与 φ \varphi φ线性无关,假设 φ ′ ( x 0 ) = 0 \varphi'(x_0)=0 φ(x0)=0,则 W ( x 0 ) = ∣ φ ( x 0 ) φ 1 ( x 0 ) φ ′ ( x 0 ) φ 1 ′ ( x 0 ) ∣ = 0 W(x_0)=\begin{vmatrix} \varphi(x_0)&\varphi_1(x_0)\\ \varphi'(x_0)&\varphi_1'(x_0)\\ \end{vmatrix}=0 W(x0)= φ(x0)φ(x0)φ1(x0)φ1(x0) =0,这与 φ 1 \varphi_1 φ1 φ \varphi φ线性无关矛盾,所以 φ ′ ( x 0 ) ≠ 0 \varphi'(x_0)\neq0 φ(x0)=0.
  4. φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x)是线性齐次微分方程的两个线性无关的解.证明:它们没有公共的零点.
    证明:
    假设 φ 1 ( x ) \varphi_1(x) φ1(x) φ 2 ( x ) \varphi_2(x) φ2(x)有公共零点 x 0 x_0 x0,则 W ( x 0 ) = ∣ φ 1 ( x 0 ) φ 2 ( x 0 ) φ 1 ′ ( x 0 ) φ 2 ′ ( x 0 ) ∣ = 0 W(x_0)=\begin{vmatrix} \varphi_1(x_0)&\varphi_2(x_0)\\ \varphi_1'(x_0)&\varphi_2'(x_0)\\ \end{vmatrix}=0 W(x0)= φ1(x0)φ1(x0)φ2(x0)φ2(x0) =0
    这与 φ 1 ( x ) \varphi_1(x) φ1(x), φ 2 ( x ) \varphi_2(x) φ2(x)线性无关矛盾,所以它们没有公共零点。
  5. 证明:线性齐次微分方程存在两个线性无关的解 y = φ 1 ( x ) y=\varphi_1(x) y=φ1(x) y = φ 2 ( x ) y=\varphi_2(x) y=φ2(x).
    证明:
    线性齐次微分方程满足其初始条件:
    { φ 1 ( x 0 ) = 1 , φ 1 ′ ( x 0 ) = 0 φ 2 ( x 0 ) = 0 , φ 2 ′ ( x 0 ) = 1 \begin{cases}\varphi_1(x_0)=1,\varphi_1'(x_0)=0\\\varphi_2(x_0)=0,\varphi_2'(x_0)=1\end{cases} {φ1(x0)=1,φ1(x0)=0φ2(x0)=0,φ2(x0)=1
    W ( x 0 ) = ∣ φ 1 ( x 0 ) φ 2 ( x 0 ) φ 1 ′ ( x 0 ) φ 2 ′ ( x 0 ) ∣ = 1 W(x_0)=\begin{vmatrix} \varphi_1(x_0)&\varphi_2(x_0)\\ \varphi_1'(x_0)&\varphi_2'(x_0)\\ \end{vmatrix}=1 W(x0)= φ1(x0)φ1(x0)φ2(x0)φ2(x0) =1
    所以线性齐次微分方程存在两个线性无关的解 y = φ 1 ( x ) y=\varphi_1(x) y=φ1(x) y = φ 2 ( x ) y=\varphi_2(x) y=φ2(x).
  6. 证明:线性非齐次微分方程的任一解,都包含在它的通解式中.
    证明:
    y = φ ( x ) y=\varphi(x) y=φ(x)是线性非齐次微分方程的任一解,那么考虑初值问题
    { y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y ( x 0 ) = φ ( x 0 ) , y ′ ( x 0 ) = φ ′ ( x 0 ) \begin{cases}y''+p(x)y'+q(x)y=f(x)\\y(x_0)=\varphi(x_0),y'(x_0)=\varphi'(x_0)\end{cases} {y′′+p(x)y+q(x)y=f(x)y(x0)=φ(x0),y(x0)=φ(x0),由于初值问题解的惟一性,可知 y = φ ( x ) y=\varphi(x) y=φ(x)是这个初值问题的惟一解.另外,由于 φ 1 \varphi_1 φ1 φ 2 \varphi_2 φ2是齐次微分方程的线性无关解,于是 W ( x 0 ) = ∣ φ 1 ( x 0 ) φ 2 ( x 0 ) φ 1 ′ ( x 0 ) φ 2 ′ ( x 0 ) ∣ ≠ 0 W(x_0)=\begin{vmatrix} \varphi_1(x_0)&\varphi_2(x_0)\\ \varphi_1'(x_0)&\varphi_2'(x_0)\\ \end{vmatrix}\neq0 W(x0)= φ1(x0)φ1(x0)φ2(x0)φ2(x0) =0
    这表明方程组 { C 1 φ 1 ( x 0 ) + C 2 φ 2 ( x 0 ) = φ ( x 0 ) C 1 φ 1 ′ ( x 0 ) + C 2 φ 2 ′ ( x 0 ) = φ ′ ( x 0 ) \begin{cases}C_1\varphi_1(x_0)+C_2\varphi_2(x_0)=\varphi(x_0)\\C_1\varphi'_1(x_0)+C_2\varphi'_2(x_0)=\varphi'(x_0)\end{cases} {C1φ1(x0)+C2φ2(x0)=φ(x0)C1φ1(x0)+C2φ2(x0)=φ(x0)必定有解,设解为 ( C 1 0 , C 2 0 ) (C_1^0,C_2^0) (C10,C20).那么,这个解 ( C 1 0 , C 2 0 ) (C_1^0,C_2^0) (C10,C20)所对应的函数 y = C 1 0 φ 1 ( x ) + C 2 0 φ 2 ( x ) + y ∗ ( x ) y=C_1^0\varphi_1(x)+C_2^0\varphi_2(x)+y^*(x) y=C10φ1(x)+C20φ2(x)+y(x)必定也是上述初值问题的解.再由柯西问题解的唯一性,即推出 φ ( x ) = C 1 0 φ 1 ( x ) + C 2 0 φ 2 ( x ) + y ∗ ( x ) \varphi(x)=C_1^0\varphi_1(x)+C_2^0\varphi_2(x)+y^*(x) φ(x)=C10φ1(x)+C20φ2(x)+y(x)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值