RepLKNet与YOLOv5相结合构建最新的RepLKDeXt结构:CVPR中的超大卷积核,越大越强大,尺寸达到31x31,提升效率的计算机视觉

本文介绍了RepLKDeXt,一种结合RepLKNet和YOLOv5的新型目标检测结构,其在CVPR中首次展示。通过采用31x31的超大卷积核,RepLKDeXt提高了对图像特征的学习能力和目标检测的准确性。实验结果显示,RepLKDeXt在多个数据集上展现出优越性能,实现了准确性和效率的双重提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近年来,深度学习在计算机视觉领域取得了重大突破,其中目标检测算法YOLOv5备受关注。然而,为了进一步提升准确性和效率,研究人员将YOLOv5与最新的主干网络RepLKNet相结合,构建了一种新的目标检测结构,称为RepLKDeXt。该结构在CVPR(计算机视觉与模式识别会议)中首次亮相,引起了广泛的关注。

RepLKNet是一种基于残差连接的轻量级主干网络,它在YOLOv5的基础上进行了改进。通过引入RepLKNet,RepLKDeXt能够更好地学习图像特征,并显著提高目标检测的准确性。此外,RepLKDeXt还引入了一种超大卷积核,这种卷积核的尺寸达到了31x31,比传统的卷积核更大。这种超大卷积核的引入使得RepLKDeXt在感知范围和感受野上具有更强大的能力,从而能够更好地捕捉目标的细节和上下文信息。

为了验证RepLKDeXt的性能,研究人员进行了一系列实验,并与其他流行的目标检测算法进行了比较。实验结果表明,RepLKDeXt在多个数据集上都取得了显著的性能提升。与传统的目标检测算法相比,RepLKDeXt在准确性和效率方面均有所突破。

以下是使用PyTorch实现的RepLKDeXt的简化代码示例:

import torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值