目标检测一直是计算机视觉领域中的重要任务之一,而YOLOv5则是近年来备受关注的一种目标检测算法。为了进一步提升YOLOv5的检测效果,许多研究人员进行了不断的探索和尝试。本文将介绍一种基于YOLOv5的改进版本,通过引入ConvNeXt模块和不同的主干CNN模型,实现了高效的目标检测。
首先,我们需要安装相关依赖。使用Python 3.x版本,并运行以下代码进行安装:
!pip install torch torchvision opencv-python
!pip install git+https://github.com/ultralytics/yolov5.git
接着,我们将训练集和测试集准备好,以COCO格式为例。将训练图像放在train/images
目录下,