spss 卡方检验,Logistic回归方法

本文通过SPSS软件探讨新生儿体重较低的影响因素,重点分析了吸烟对新生儿体重的影响。首先,卡方检验显示吸烟与新生儿低出生体重有显著关联。接着,通过Logistic回归分析,发现吸烟、妊娠前体重、早产次数和高血压等因素对新生儿体重产生影响。文中还提到了Walds检验、似然比检验和比分检验在变量筛选中的应用,并指出在有共线性时Walds检验可能不可靠,建议使用似然比检验或比分检验。
摘要由CSDN通过智能技术生成

每天进步一点点

案例:新生儿体重较低影响因素
1:影响因素分析,求出哪些自变量对因变量发生概率有影响,并计算各自变量对因变量的比数比;
2:作为判别分析方法,来估计各种自变量组合条件下因变量各类别的发生概率,从而对结局进行预测,该模型在结果上等价于判别分析;

说明:低出生体重标准:新生儿体重<2500克
结果变量为是否娩出低出生体重儿,变量名为low,1 = 低出生体重,0 =非低出生体重;
考虑的影响因素,即自变量如下:
1:产妇妊娠前体重(lwt,磅)
2:产妇年龄(age,岁)
3:产妇在妊娠期间是否抽烟(smoke,0=未吸,1=吸烟)
4:本次妊娠前早产次数(plt,次)
5:是否患有高血压(ht,0=未患,1=患病)
6:子宫对按摩,催产素等刺激引起收缩的应激性(ui,0=无,1=有)
7:妊娠前三个月社区一声随访次数(ftv,次)
8:种族(race,1=白人,2=黑人,3=其他民族)

数据源请至“我的资源” 自行下载~~~,需要1积分哦~

### SPSS 中有序概率 Logistic 回归使用教程 #### 一、准备工作 在执行有序概率Logistic回归之前,需确保数据集已准备好并导入到SPSS环境中。这包括定义变量属性(如测量尺度),清理异常值以及处理缺失数据。 #### 二、启动过程 进入`Analyze -> Regression -> Ordinal...`菜单选项来打开有序Logistic回归对话框[^1]。 #### 三、指定因变量与协变量 - 将分类型的目标变量拖放到“Dependent”栏内; - 把连续型或分类型解释因子放入对应的“Factor(s)”或是"Covariate(s)"区域中;对于多水平的名义量表形式输入项,则应考虑创建哑变量表示法[^3]。 #### 四、设置模型参数及其他配置 利用该窗口下方的一系列子命令按钮可以进一步定制分析流程: - **Location**: 这里可以选择不同的链接函数,默认采用累积logit作为连接方式。 - **Statistics and Cell Counts**: 可勾选输出多项检验指标,比如似然比卡方测试(Chi-square),伪R平方(Pseudo R-squared)等评估拟合优度的信息标准AIC/BIC, 同时还可以获取各个类别的频数表格。 - **Save**: 此处允许保留预测的概率分数、预期类别标签以及其他辅助诊断工具用于后续验证模型表现力。 完成上述设定之后点击OK键提交任务请求等待运算结束即可获得完整的报告文件[^4]。 ```spss * 下面是一段简单的SPSS语法示例 *. PLUM dependentVariable WITH independentVariables /CRITERIA=CIN(95) DELTA(0) LCONVERGE(0) MXITER(100) MXSTEP(5) PCONVERGE(1.0E-6) SINGULAR(1.0E-8) /PRINT=FIT PARAMETER SUMMARY /SAVE=PREDPROB PREDCAT . ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值