每天进步一点点
案例:根据父子身高建立线性回归模型
分析要求:
1:根据表中的数据估计子辈身高依据父辈身高的线性回归模型,写出回归方程
并检验变量间线性关系是否显著(α=0.05);
2:解释模型中回归系数的现实含义;
分析结果:
1:回归方程 y = 35.825+0.476x ;
2:回归系数0.476 表示父辈身高x对子辈身高y的影响为正,即父辈身高越高,则子辈身高也越高,这符合实际情况 ;
所用数据请移步至“我的资源”进行下载,需要1c币哦
根据 父子身高数据做 散点图 — 添加趋势线 —勾选:在图表上显示公式,在图表上显示R平方值 ,即可获得 一元线性回归方程y = 0.4764x+35.825, R方 = 0.49372
与spss建模相比较,excel做一元回归更加简单方便
这里是python skearn LinearRegression 根据父子身高建立一元线性回归