pytorch Module中的forward使用for循环与不使用for循环的区别

本文通过实例探讨了PyTorch中Module的__init__()和forward()函数的区别。作者发现,__init__()定义了Module的网络结构,而forward()决定了网络的执行流程。在forward()的for循环里,输入数据是通过同一个网络进行处理,而非每次都使用新的网络。这有助于初学者理解PyTorch模块的内部工作原理。
摘要由CSDN通过智能技术生成

作为初学者,看代码一度很迷惑,module中的forward函数中for循环,输入的Tensor数据是在同一个网络循环,还是依次向前推进了多个不同的网络。于是,我经过了下面的测试。

import torch.nn as nn


class Model1(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()

        self.block = nn.Linear(hidden_dim, hidden_dim)

    def forward(self, x):
        x = self.block(x) + x
        x = self.block(x) + x
        x = self.block(x) + x
        return x


class Model2(nn.Module):
    def __init__(self, hidden_dim):
        super().__init__()

        self.block = nn.Linear(hidden_dim, hidden_dim)

    def forward(self, x):
        for i in range(3):
            x = self.block(x) + x
        return x


model1 = Model1(hidden_dim=10)
model2=Model2(hidden_dim=10)
print(model1)
print(model2)

得到以下结果:

Model1(
    (block): Linear(in_feature=10, out_feature=10, bias=True)
)
Model2(
    (block): Linear(in_feature=10, out_feature=10, bias=True)
)

然后我就悟了!一个Module的结构到底是由什么构成的,是__init__()还是forward()?结论是__init__()决定了Module有哪些网络,forward()决定了Module的网络是如何连接的。在forward()中无论如何调用__init__()中定义的某个网络,始终都是同一个网络。

那么文章开头那个问题的答案就有了,答案是:for循环中,通过的是同一个网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值