跳跃游戏
题目描述
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
解题思路
个人AC
创建一个数组dp
,dp[i]
表示第i
个位置最远能够到达的下标。
从nums
的倒数第二个元素开始向前遍历:
- 如果
nums[i] == 0
,表示当前位置不能移动,则dp[i] = i
; - 否则
nums[i] != 0
,表示当前位置向后最远能移动nums[i]
个位置,和dp
的后面nums[i]
个元素进行比较,取最远能够到达的下标赋值给dp[i]
。
最后判断dp[0] >= finalPos
。
class Solution {
public boolean canJump(int[] nums) {
int len = nums.length;
int finalPos = len - 1;
int[] dp = new int[len];
for (int i = finalPos - 1; i >= 0; i--) {
if (nums[i] != 0) {
dp[i] = i + nums[i];
for (int j = i + 1; j < len && j <= i + nums[i]; j++) {
if (dp[i] >= finalPos) break;
dp[i] = Math.max(dp[i], dp[j]);
}
} else {
dp[i] = i;
}
}
return dp[0] >= finalPos;
}
}
时间复杂度: O ( n 2 ) O(n^2) O(n2);
空间复杂度: O ( n ) O(n) O(n)。
最优解
贪心算法
- 如果
nums[i] > 0
,则该位置可以作为起跳点,并且后面nums[i]
个位置都可以作为起跳点; - 把每一个能作为起跳点的位置都尝试一次,把能跳到的最远的距离不断更新;
- 如果可以抵达最后的位置,则说明游戏可以成功。
class Solution {
public boolean canJump(int[] nums) {
int len = nums.length;
int furthestPos = 0;
for (int i = 0; i < len; i++) {
if (furthestPos < i) return false;
furthestPos = Math.max(furthestPos, i + nums[i]);
}
return true;
}
}
时间复杂度: O ( n ) O(n) O(n);
空间复杂度: O ( 1 ) O(1) O(1)。