LeetCode 0073 -- 矩阵置零

矩阵置零

题目描述

给定一个m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0。请使用原地算法**。**

示例 1:

输入: 
[
  [1,1,1],
  [1,0,1],
  [1,1,1]
]
输出: 
[
  [1,0,1],
  [0,0,0],
  [1,0,1]
]

示例 2:

输入: 
[
  [0,1,2,0],
  [3,4,5,2],
  [1,3,1,5]
]
输出: 
[
  [0,0,0,0],
  [0,4,5,0],
  [0,3,1,0]
]

进阶:

  • 一个直接的解决方案是使用 O ( m n ) O(mn) O(mn)的额外空间,但这并不是一个好的解决方案。
  • 一个简单的改进方案是使用 O ( m + n ) O(m+n) O(m+n)的额外空间,但这仍然不是最好的解决方案。
  • 你能想出一个常数空间的解决方案吗?

解题思路

个人AC

  1. 首先判断第一行和第一列是否包含零,使用zeroIn1RowzeroIn1Col保存;
  2. 然后,将剩余行和列中的零上浮到第一行和第一列:
    • 首先遍历剩余矩阵,如果matrix[i][j] == 0,则将matrix[0][j]matrix[i][0]置为0;
    • 再遍历第一行和第一列(除matrix[0][0]之外):
      • 遍历第一行(除matrix[0][0]),当遇到matrix[0][j] == 0时,将第j列都置为0;
      • 遍历第一列(除matrix[0][0]),当遇到matrix[i][0] == 0时,将第i行都置为0。
class Solution {
    public void setZeroes(int[][] matrix) {
        int rows = matrix.length, cols = matrix[0].length;
        if (rows == 0 || cols == 0) return;

        // 首先判断第一行和第一列是否包含零
        boolean zeroIn1Row = false, zeroIn1Col = false;
        for (int j = 0; j < cols; j++) {
            if (matrix[0][j] == 0) zeroIn1Row = true;
        }
        for (int i = 0; i < rows; i++) {
            if (matrix[i][0] == 0) zeroIn1Col = true;
        }

        // 将剩余行和列中的零上浮到首行和首列
        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < cols; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }

        // 首列
        for (int i = 1; i < rows; i++) {
            if (matrix[i][0] != 0) continue;

            for (int j = 1; j < cols; j++) {
                matrix[i][j] = 0;
            }
        }

        // 首行
        for (int j = 1; j < cols; j++) {
            if (matrix[0][j] != 0) continue;

            for (int i = 1; i < rows; i++) {
                matrix[i][j] = 0;
            }
        }

        if (zeroIn1Row) {
            for (int j = 0; j < cols; j++) {
                matrix[0][j] = 0;
            }
        }

        if (zeroIn1Col) {
            for (int i = 0; i < rows; i++) {
                matrix[i][0] = 0;
            }
        }
    }
}

时间复杂度: O ( m ∗ n ) O(m*n) O(mn)

空间复杂度: O ( 1 ) O(1) O(1)

最优解

简化版

class Solution {
    public void setZeroes(int[][] matrix) {
        boolean col0_flag = false;
        int row = matrix.length;
        int col = matrix[0].length;
        for (int i = 0; i < row; i++) {
            if (matrix[i][0] == 0) col0_flag = true;
            for (int j = 1; j < col; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = matrix[0][j] = 0;
                }
            }
        }
        for (int i = row - 1; i >= 0; i--) {
            for (int j = col - 1; j >= 1; j--) {
                if (matrix[i][0] == 0 || matrix[0][j] == 0) {
                    matrix[i][j] = 0;
                }
            }
            if (col0_flag) matrix[i][0] = 0;
        }
    }
}

时间复杂度: O ( m ∗ n ) O(m*n) O(mn)

空间复杂度: O ( 1 ) O(1) O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值