自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(26)
  • 收藏
  • 关注

原创 【将本体导入到neo4j】

/ 这一步可能也要,如果报错了的话也不用担心直接执行下一步。命令:java -jar rdf2rdf - 1.0.2 - 2.3.1.jar test.owl test.rdf。// 图初始化,这一步必须有,没有就导不进去。例如本地有一个owl文件:test.owl,首先在java jdk8环境中将其转换为test.rdf。命令:neo4j.bat console。

2023-08-28 14:03:09 431

原创 【本体构建】

本体侧重于描述领域知识中概念与概念之间存在的关系,它是一种 概念模型,能较好的对领域知识进行层次性、抽象性描述,但是不涉及到具体知识。方式通常先定义知识图谱的本体,从顶层出发逐步细化模式层的层次,我们可通过本体编辑器或手工构建方法来构建知识图谱模式层,然后将数据添加到概念中。1、本体在计算机领域中常用于描述语义知识,可作为某一专业领域知识的泛用概念模型,该模型包含概念与概念之间的关系以及描述它们的属性,不包含相关领域中具体个体的信息。:它们都用于表示某一领域中的知识,对某一领域中的知识进行形式化表达。

2023-08-09 17:49:36 951

原创 并行计算复习

块内的线程通过共享内存、原子操作和屏障同步进行合作。

2023-08-08 17:49:14 169

原创 NLP入门

2023-08-08 17:48:47 113

原创 温习机器学习算法

1、Random Forest(随机森林)是一个基于树模型的Bagging的优化版本,一棵树的生成肯定还是不如多棵树,因此出现了随机森林,解决决策树泛化能力弱的特点。(理解可以成三个臭皮匠顶过诸葛亮)

2023-08-08 17:48:19 69

原创 Linux入门

day1day2。

2023-08-08 17:47:48 56

原创 【机器学习刷题】

简单来讲:假设我们想估计A和B这两个参数,在开始状态下二者都是未知的,但如果知道了A的信息就可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一直持续到收敛为止。8、EM是一种迭代式的方法,它的基本思想就是:若样本服从的分布参数θ已知,则可以根据已观测到的训练样本推断出隐变量Z的期望值(E步),若Z的值已知则运用最大似然法估计出新的θ值(M步)。5、常用的划分测试集和训练集的划分方法:留出法、交叉验证法、自助法。

2023-08-08 17:47:15 147

原创 知识图谱应用研究

基于Cypher的数据库语句能 够实现在Neo4j中进行高效的查询、更新和管理,它结合了一些SQL语句中的特 点匹配图数据库中的实体和关系,能以一种直观清晰的方式进行复杂的数据库查 询操作,这也使得开发人员不用花费大量的时间和经历去思考数据库语句的撰写, 从而极大提升开发人员的体验和效率。28、相比于传统的LSTM而言,GRU模型由于其特殊的“门” 结构和改变,在训练的过程中所需要的参数量更少,因此训练速度也更快,同时对 于训练所需数据量的需求也更少了。成对实体对齐的特点就在于考虑了实体之间属性的相似度。

2023-08-08 17:46:38 71

原创 NLP基础回顾

过拟合的表现形式: 导致过拟合的原因有哪些:过拟合的解决方案有哪些:欠拟合的表现形式:导致欠拟合的原因:欠拟合的解决方案有哪些:Batch Normalization适合用于:存在什么问题:Layer Normalization用途:

2023-08-08 17:45:18 53

原创 【python基础】

在Python3中list.remove(obj)移除列表中某个值的第一个匹配项, list.extend(seq)在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表),所以 lists.remove(1) 执行之后 lists = [1,2,3,4,5,6],再执行 lists.extend([7,8,9]) 后lists = [1,2,3,4,5,6,7,8,9]对于+=操作,如果是可变对象,则操作前后序列的id值不变,如果是不可变对象,则操作前后序列的id值改变,故B正确。

2023-07-13 23:27:56 94 1

原创 【论文阅读】Reinforcement Learning-Based Black-Box Model Inversion Attacks

强化学习

2023-06-16 15:08:57 521 1

原创 论文阅读-《A Survey of Large Language Models》

LLM综述论文

2023-06-08 11:37:46 1581 1

原创 【动手学深度学习】循环神经网络

为了对文本进行预处理,我们通常将文本拆分为词元,构建词表将词元字符串映射为数字索引,并将文本数据转换为词元索引以供模型操作。我们将解析文本的常见预处理步骤。建立一个词表,将拆分的词元映射到数字索引。将文本转换为数字索引序列,方便模型操作。文本是序列数据的一种最常见的形式之一。将字符串拆分为词元(如单词和字符)。将文本作为字符串加载到内存中。

2023-06-06 12:58:57 79

原创 【动手学深度学习】深度学习计算

请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。一个典型的错误如下:计算GPU上每个小批量的损失,并在命令行中将其报告给用户(或将其记录在NumPy。最好是为GPU内部的日志分配内存,并且只移动较大的日志。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU。一种前向传播函数,用于将输入按追加块的顺序传递给块组成的“链条”。

2023-06-06 12:58:27 72

原创 【动手学深度学习】多层感知机

我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制, 使其能处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层堆叠在一起。每一层都输出到上面的层,直到生成最后的输出。我们可以把前L−1层看作表示,把最后一层看作线性预测器。通过计算加权和并加上偏置来确定神经元是否应该被激活, 它们将输入信号转换为输出的可微运算。大多数激活函数都是非线性的。当训练数据稀缺时,我们甚至可能无法提供足够的数据来构成一个合适的验证集。最后,通过对K次实验的结果取平均来估计训练和验证误差。

2023-06-06 12:58:11 79

原创 动手学深度学习-线性神经网络

批量大小和学习率的值通常是手动预先指定,而不是通过模型训练得到的。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。梯度下降最简单的用法是计算损失函数(数据集中所有样本的损失均值) 关于模型参数的导数(在这里也可以称为梯度)。为了度量模型在整个数据集上的质量,我们需计算在训练集n个样本上的损失均值(也等价于求和)。对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换称为。改变均值,图像会左右平移,改变方差,图像的峰值会伸缩。

2023-06-06 12:57:53 63

原创 动手学深度学习-预备知识

data :输入的数据(dataframe,series,array-like)(1)pd.get_dummies 基于one-hot编码的特征提取。将离散型特征每一种取值看作一种状态,将不同值的变量转换为0/1。columns :指定所需要实现类别转换的列名。(3)A.numel()求矩阵元素的个数。(1)Hadamard积。

2023-06-06 12:57:32 76

原创 【动手学深度学习】卷积神经网络

(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。比如,一个240×240像素的图像,经过10层5×5的卷积后,将减少到200×200像素。AlexNet的架构与LeNet相似,但使用了更多的卷积层和更多的参数来拟合大规模的ImageNet数据集。与卷积层输出的平方误差,然后计算梯度来更新卷积核。为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数。

2023-06-06 12:57:09 153

原创 MySQL 学习记录

如果一个列是 UNIQUE+NOT NULL ,则效果非常类似于PRIMARY KEY。理解:先分组(group by)---再过滤(having)如果没有指定NOT NULL,则该列还是可以有多个NULL。自连接是指在同一张表的连接查询【将同一张表看作两张表】(1)主键:主键列的值是不能重复且不能为NULL的。一张表最多只能有一个主键,但可以是复合主键。(2) unique:定义后该列值不能重复。(2)sum()仅对数值有用。(4)max()与min()(8)加密函数和系统函数。(5)字符串相关函数。

2023-06-06 12:55:06 61

原创 《论文写作》学习心得

该博文是硕士研究生必须要掌握的部分论文写作技巧以及注意事项,内容为闵帆老师课程所授。

2022-10-29 16:15:46 223

原创 pythonML学习记录ch3-用核支持向量机求解非线性问题

利用核支持向量机对非线性问题进行处理。

2022-10-25 19:26:01 889

原创 pythonML学习记录ch3-支持向量机的最大余量分类

初步认识一种强大而且广泛使用的机器学习算法--支持向量机(svm),可以把它当成是感知器的延伸。

2022-10-25 15:17:49 116

原创 pythonML学习记录ch3-基于逻辑回归的分类概率建模

逻辑回归是一种简单且强大的解决线性二元分类问题的算法,它是一种分类模型而不是回归模型。

2022-10-22 22:28:54 424

原创 pythonML学习笔记ch3-sklearn训练ppn

利用鸢尾花数据集对sklearn进行了解的实例

2022-10-18 11:18:46 689

原创 pythonML学习笔记ch2-Adaline

python机器学习-塞巴斯蒂安.拉施卡学习笔记

2022-10-16 16:08:07 1042

原创 pythonML学习笔记ch2-perceptron

机器学习

2022-10-14 20:44:19 500

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除