【动手学深度学习】卷积神经网络

卷积神经网络(CNN)利用平移不变性和局部性,通过卷积层处理图像,减少参数需求。文章介绍了从全连接层到卷积层的转变,以及卷积操作的计算方式。通过示例展示了如何学习卷积核,并讨论了填充和步幅在保持图像信息完整性的关键作用。文中还提到了经典的LeNet、AlexNet和VGG网络,展示深度学习在图像识别领域的进展。
摘要由CSDN通过智能技术生成

从全连接层到卷积

  1. 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。

  2. 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。

简而言之, 卷积神经网络是包含卷积层的一类特殊的神经网络。 在深度学习研究社区中,V被称为卷积核(convolution kernel)或者滤波器(filter),亦或简单地称之为该卷积层的权重,通常该权重是可学习的参数。

小结:

  1. 图像的平移不变性使我们以相同的方式处理局部图像,而不在乎它的位置。

  2. 局部性意味着计算相应的隐藏表示只需一小部分局部图像像素。

  3. 在图像处理中,卷积层通常比全连接层需要更少的参数,但依旧获得高效用的模型。

  4. 卷积神经网络(CNN)是一类特殊的神经网络,它可以包含多个卷积层。

  5. 多个输入和输出通道使模型在每个空间位置可以获取图像的多方面特征。

图像卷积

卷积操作计算:

​ 

 代码实现上述操作:

import torch
from torch import nn
from d2l import torch as d2l

def corr2d(X, K):  #@save
    """计算二维互相关运算"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

 现在让我们看看是否可以通过仅查看“输入-输出”对来学习由X生成Y的卷积核。 我们先构造一个卷积层,并将其卷积核初始化为随机张量。接下来,在每次迭代中,我们比较Y与卷积层输出的平方误差,然后计算梯度来更新卷积核。为了简单起见,我们在此使用内置的二维卷积层,并忽略偏置。

# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)

# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2  # 学习率

for i in range(10):
    Y_hat = conv2d(X)
    l = (Y_hat - Y) ** 2
    conv2d.zero_grad()
    l.sum().backward()
    # 迭代卷积核
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    if (i + 1) % 2 == 0:
        print(f'epoch {i+1}, loss {l.sum():.3f}')

 小结:

  • 二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。

  • 我们可以设计一个卷积核来检测图像的边缘。

  • 我们可以从数据中学习卷积核的参数。

  • 学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。

  • 当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。

步幅和填充

比如,一个240×240像素的图像,经过10层5×5的卷积后,将减少到200×200像素。如此一来,原始图像的边界丢失了许多有用信息。而填充是解决此问题最有效的方法; 

在应用多层卷积时,我们常常丢失边缘像素。 由于我们通常使用小卷积核,因此对于任何单个卷积,我们可能只会丢失几个像素。 但随着我们应用许多连续卷积层,累积丢失的像素数就多了。 解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0)。

卷积操作计算:

卷积神经网络(LeNet)

 小结:

  1. 卷积神经网络(CNN)是一类使用卷积层的网络。

  2. 在卷积神经网络中,我们组合使用卷积层、非线性激活函数和汇聚层。

  3. 为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数。

  4. 在传统的卷积神经网络中,卷积块编码得到的表征在输出之前需由一个或多个全连接层进行处理。

  5. LeNet是最早发布的卷积神经网络之一。

AlexNet

与LeNet的架构比较

AlexNet和LeNet的设计理念非常相似,但也存在显著差异。

  1. AlexNet比相对较小的LeNet5要深得多。AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。

  2. AlexNet使用ReLU而不是sigmoid作为其激活函数。

小结:

  1. AlexNet的架构与LeNet相似,但使用了更多的卷积层和更多的参数来拟合大规模的ImageNet数据集。

  2. 今天,AlexNet已经被更有效的架构所超越,但它是从浅层网络到深层网络的关键一步。

  3. 尽管AlexNet的代码只比LeNet多出几行,但学术界花了很多年才接受深度学习这一概念,并应用其出色的实验结果。这也是由于缺乏有效的计算工具。

  4. Dropout、ReLU和预处理是提升计算机视觉任务性能的其他关键步骤。

VGG网络

 小结:

  1. VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。

  2. 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。

  3. 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值