学点算法(七)——十进制数转换为二进制数

今天我们来学习十进制转为二进制的算法。

大家学习计算机或者编程,都会知道计算机处理数据都是基于二进制的,而我们在日常生活中都是使用十进制。如果要用计算机存储数据,肯定要将十进制转化为二进制,或者我们要查数据,要将二进制转换为十进制,那么问题来了:现在有一个十进制数,我们如何将其转换为二进制数呢?

比如我们现在有一个数字:1024(预先给定的数字默认用十进制理解)。用十进制表示为:
102 4 ( 10 ) = 1 × 1 0 3 + 0 × 1 0 2 + 2 × 1 0 1 + 4 × 1 0 0 1024_{(10)} = 1 \times 10^3 + 0 \times 10 ^ 2 + 2 \times 10 ^ 1 + 4 \times 10 ^ 0 1024(10)=1×103+0×102+2×101+4×100
用二进制可表示为:
102 4 ( 10 ) = 10 , 000 , 000 , 00 0 ( 2 ) = 1 × 2 10 + 0 × 2 9 + 0 × 2 8 + 0 × 2 7 + 0 × 2 6 + 0 × 2 5 + 0 × 2 4 + 0 × 2 3 + 0 × 2 2 + 0 × 2 1 + 0 × 2 0 1024_{(10)} = 10,000,000,000_{(2)} = 1 \times 2^{10} + 0 \times 2 ^ 9 + 0 \times 2 ^ 8 + 0 \times 2 ^ 7 + 0 \times 2 ^ 6 + 0 \times 2 ^ 5 + 0 \times 2 ^ 4 + 0 \times 2 ^ 3 + 0 \times 2 ^ 2 + 0 \times 2 ^ 1 + 0 \times 2 ^ 0 1024(10)=10,000,000,000(2)=1×210+0×29+0×28+0×27+0×26+0×25+0×24+0×23+0×22+0×21+0×20
可以发现一个规律:十进制或者二进制的最终表示形式1024或10,000,000,000可以取展开式的系数得到,而这个展开式公式里面的数字都是以十进制表示的。我们只要取到这些系数就可以得到二进制数的表示,那么我们如何取到这些系数呢?

为了简便和易于理解,我们以十进制来分析,可以发现,最后一项值是4,10的指数是0,即最后一项值本身就是系数本身,而展开式的其他项的指数都大于等于1,即意味着它们都可以被10整除,那么最后一项就是整体值除以10后留下的余数,即系数。通过除10取余的方法,我们可以得到最后一项的系数4,那么如何取到倒数第二项的系数呢?很简单,除以两次10就得到了倒数第二项的系数。其他项系数可以通过同样的方法取到。那么什么时候结束呢?就是我们取不到任何系数的时候,就是我们上一次除完10得到的商为0,即表示最后一个系数被我们取到了,整个过程宣告终止。

整体流程如下:
①取倒数第一个系数:
102 4 ( 10 ) / 10 = 10 2 ( 10 ) = ( 1 × 1 0 2 + 0 × 1 0 1 + 2 × 1 0 0 ) ⋯ ⋯ 4 1024_{(10)} / 10 = 102_{(10)} = (1 \times 10^2 + 0 \times 10 ^ 1 + 2 \times 10 ^ 0)\cdots\cdots4 1024(10)/10=102(10)=(1×102+0×101+2×100)4
②取倒数第二个系数:
10 2 ( 10 ) / 10 = 1 0 ( 10 ) = ( 1 × 1 0 1 + 0 × 1 0 0 ) ⋯ ⋯ 2 102_{(10)} / 10 = 10_{(10)} = (1 \times 10^1 + 0 \times 10 ^ 0)\cdots\cdots2 102(10)/10=10(10)=(1×101+0×100)2
③取倒数第三个系数:
1 0 ( 10 ) / 10 = 1 ( 10 ) = ( 1 × 1 0 0 ) ⋯ ⋯ 0 10_{(10)} / 10 = 1_{(10)} = (1 \times 10^0)\cdots\cdots0 10(10)/10=1(10)=(1×100)0
④取倒数第四个系数:
1 ( 10 ) / 10 = 0 ( 10 ) = 0 ⋯ ⋯ 1 1_{(10)} / 10 = 0_{(10)} = 0\cdots\cdots1 1(10)/10=0(10)=01
这时,商变成了0,整个过程终止。
而最终得到数即是把每一步得到的数反过来排列,4201反过来即是1024。

二进制的原理同十进制,只是把每个过程的除数换成2即可。

注意到我们将每轮求得的结果值反过来排列才是最后的结果值,这种逆序输出的性质刚好对应了栈的后进先出的特性。索引我们可以使用栈来保存计算过程中求得的系数,所有系数求解完毕后再逆序输出即可。

代码实现如下:

/**
 * 十进制转为二进制
 *
 * @return 十进制数对应的二进制数
 */
public static String decimal2BinaryString(int decimal) {
    // 如果十进制为0,则直接返回0
    if (decimal == 0) {
        return "0";
    }
    // 使用栈来保存先求出来的系数
    Deque<Integer> stack = new ArrayDeque<>();
    int r = decimal;
    int m;
    while (r != 0) {
        // 求当前最后一个系数
        m = r % 2;
        // 求当前商,并赋值回r,做下一轮运算
        r = r >> 1;
        // 将当前系数保存到栈中
        stack.push(m);
    }
    // 依次将保存在栈中的数据取出,拼接成二进制
    StringBuilder builder = new StringBuilder(stack.size());
    while (!stack.isEmpty()) {
        builder.append(stack.pop());
    }
    // 返回二进制字符串
    return builder.toString();
}

测试代码如下:

System.out.println(decimal2BinaryString(1024));

输出结果如下:

10000000000

符合我们的预期。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值