加速各种生成模型!NeurIPS开源!CMU、MIT、斯坦福提出高效空间稀疏推理!

CMU、MIT和斯坦福的研究者在2022 NeurIPS上开源了一种名为Spatially Sparse Inference (SSI)的技术,用于加速条件GAN和扩散模型的推理。该方法通过利用编辑区域的空间稀疏性,减少了计算资源的浪费,提高了在Apple M1 Pro CPU上的推理速度。SIGE(Sparse Incremental Generation Engine)作为其延伸,进一步减少了计算延迟。实验证明,该方法在保持视觉保真度的同时,显著降低了DDIM和GauGAN的计算需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“3D视觉工坊”,选择“星标”

 

干货第一时间送达

927476ef3bd0f77341596085ee01508f.jpeg

作者丨空港

来源丨计算机视觉工坊

1. 个人理解

生成模型近年来发展迅猛,已经表现出极强的真实感合成能力,在三维重建、AI绘画、音视频创作、可控图像生成、真实图像编辑等领域的应用广泛。例如,即便没有绘画基础,大家也可以很容易利用生成模型绘制大师级画作。但近年来SOTA生成模型的主要问题是需要大量的计算资源,这一方面是由于深度网络的框架较为复杂,另一方面是因为每次针对图像可能只是做了很小的改动,但生成模型仍然需要重新计算整张图像。

在2022 NeurIPS论文“Efficient Spatially Sparse Inference for Conditional GANs and Diffusion Models”中,CMU、MIT、斯坦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值