北大“韦神”出了道数学题,有老师用ChatGPT做答,结果出乎意料

本文来源:北京大学、人民日报、知乎、中国青年报等,编辑:募格学术

近日,北京大学北京国际数学研究中心推出的一道数学题,获得了数学爱好者的广泛关注。

出题的是北京大学数学科学学院研究员,第49届、第50届国际数学奥林匹克竞赛满分金牌得主韦东奕。

745ad4c9549d622f366869572ff99e15.jpeg

题目

be85c256258c2992332119f8ea5c90ac.png

截至目前,已有近百位读者提交了解答。出题人韦东奕从中挑选了三份作为“较好的解答举例”。据韦东奕介绍,本题的解答线索只有一个,因此他挑选出来的三份解答相似度高,均可以作为标准答案来使用。特别是其中有一位初中二年级的同学,给出了简洁、完备的答案,令人欣喜。

同时,最近火爆全球的ChatGPT被不少人实测科研全流程都能用,所以北京国际数学研究中心老师们也尝试了用ChatGPT去解答韦东奕出的题目,结果也令人意想不到....

韦东奕选择的较好的解答案例

解答1 答题人来自国内某大学

a14441b60ffcdbdebd0cc972722faf11.png

2f7501260a3d5b07c15f426f914518aa.png

解答2 答题人来自国内某中学

b9b4b07071d48bd5c87813ff0cad4eac.jpeg

解答3 答题人来自海外某大学

ba111f844b13686a614599f0eef75cd9.jpeg

ChatGPT解答

近日,GPT-4发布,那么他能不能解答韦东奕出的题目呢?下面是北京国际数学研究中心老师们测试的结果——

3414c62dfa9a299e59e575cf567a802f.png图片来自于董彬老师的报告

现阶段的GPT-4,虽然在一次次的提示下逻辑推理能力有大幅度的提升,但答案从第二行开始就有错误,提示了5次也没有做对,目前的GPT-4还是无法完成稍微有挑战的数学问题。

中国科学院院士、北京大学数学科学学院教授、北京国际数学研究中心主任田刚说,目前看来,在“解答有挑战的数学问题”这个任务上人类大脑具有优势,但是随着AI不断升级更新,这种优势能在多大程度上保持呢?年轻一代将肩负起探寻这一问题答案的重任。

研究生如何利用ChatGPT帮助开展日常科研工作?

不过,尽管ChatGPT此次回答不尽如人意,但在一些基础的科研工作上,ChatGPT还是能起到一定的辅助作用。

论文搜集

(原文/知乎芯片斯多葛)

指定论文主题和时间范围,ChatGPT会自动给出一些代表性论文,根据论文顺藤摸瓜,可以对相关领域有大概了解。

f274933a978b6a88db3f833e53baada2.png

我们让ChatGPT搜索过去一年脉冲神经网络的文章。通过上图可以看出,ChatGPT不仅给出了脉冲神经网络过去一年这一领域的代表性文章,还给出了进一步搜索论文的方法,对科研小白很友好。

给导师请假

假设一个场景,你明天想出去玩儿,但是有组会,如何给导师发一封合理动情的请假信?

fbb0a6e99f6456d79b190a75dddcd582.png

上面是ChatGPT给出的请假email模板,给出了理由以及补救措施,语气委婉,拿过来改改就能直接用a9351e92f05867fbc79af551f0c5e2af.png

韦神简介

韦东奕1991年出生在一个高级知识分子家庭,父母都是教授,身为数学系教授的父亲,更是对他影响深远,如今对数学的热爱,主要来自父亲对他的影响。

14岁时,韦东奕被破格录取到了附中的奥数班,凭借数学天赋,直接跳过中考,算是被“保送”到重点高中的。这才是他天才之路的开端。

15岁,他入选数学奥赛国家集训队,他在数学方面的强大,令队友、教练叹服。韦东奕创造了24道题完成了23道半的纪录,唯一没解出的那半道题目,队友更是全军覆没。

2014年,韦东奕获得了北大学士学位,人称“韦教主”,北大的数学学神。

2018年,他获得了北大博士学位。

2019年,他在北京国际数学研究中心做博士后并出站,2019年12月之后留校,担任助理教授。

e6699c659a95eb8c98331c3a6200bc90.png

网友评论

1500ed1567b8e6dc04b1155c267f1a72.png

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

261092c4692a755dbe8a4e06175afa54.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

cde94703f6c3758a423136bf867033bc.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值