160亿参数,新增多项能力,复旦MOSS开源了

来源丨机器之心

编辑丨蛋酱

点击进入—>3D视觉工坊学习交流群

今年 2 月份,机器之心报道了复旦大学推出中国版 ChatGPT 的消息,引起了广泛关注。当时,邱锡鹏教授就曾表示将于四月份开源 Moss。

昨天,开源版的 Moss 真的来了。

83c8d3a0de0be70a4404ba09fa628906.jpeg

项目地址:https://github.com/OpenLMLab/MOSS

MOSS 是一个支持中英双语和多种插件的开源对话语言模型,但参数数量比 ChatGPT 少得多。在 v0.0.2 之后,团队持续对其进行调整,推出了 MOSS v0.0.3,也就是目前开源的版本。相比于早期版本,功能也实现了多项更新。

最初的测试中,MOSS 的基础功能与 ChatGPT 类似,可以按照用户输入的指令完成各类自然语言处理任务,包括文本生成、文本摘要、翻译、代码生成、闲聊等等。

开放内测后,团队继续加大中文语料的预训练:「截止目前,MOSS 003 的基座语言模型已经在 100B 中文 token 上进行了训练,总训练 token 数量达到 700B,其中还包含约 300B 代码。」

在开放内测后,我们也收集了一些用户数据,我们发现真实中文世界的用户意图和 OpenAI InstructGPT 论文中披露的 user prompt 分布有较大差异(这不仅与用户来自的国家差异有关,也跟产品上线时间有关,早期产品采集的数据中存在大量对抗性和测试性输入),于是我们以这部分真实数据作为 seed 重新生成了约 110 万常规对话数据,涵盖更细粒度的 helpfulness 数据和更广泛的 harmlessness 数据。

内容来源:https://www.zhihu.com/question/596908242/answer/2994534005

目前,团队已将 moss-moon-003-base、moss-moon-003-sft、moss-moon-003-sft-plugin 三个模型上传到 HuggingFace。后续,还有三个模型将会开源。

6e3dcc6e89cadc8c71f3eb3c669eabb3.png

根据项目主页介绍,moss-moon 系列模型具有 160 亿参数,在 FP16 精度下可在单张 A100/A800 或两张 3090 显卡运行,在 INT4/8 精度下可在单张 3090 显卡运行。

团队同时表示,由于模型参数量较小和自回归生成范式,MOSS 仍然可能生成包含事实性错误的误导性回复或包含偏见 / 歧视的有害内容,请谨慎鉴别和使用 MOSS 生成的内容,请勿将 MOSS 生成的有害内容传播至互联网。

新增能力

在 MOSS v0.0.3 中,团队加入了多项新能力。

团队构造了约 30 万插件增强的对话数据,包含搜索引擎、文生图、计算器、方程求解等。关于插件版 MOSS 如何使用,后续团队将在 GitHub 公布。

66de56575b6a42dfdd4ea2ffc5284e78.png

MOSS v0.0.3 现已引入使用多种插件的能力。

下图展示了调用搜索引擎的能力:

5256bfda193a945b930c303491af9be4.png

下图展示了调用方程求解器的能力:

49ac3b29dd1bbdc8881570ac7d158ecd.png

下图展示了从文本生成图片的能力:

1ccc2b397b750a94f371fd2e7e8a957d.png

项目作者孙天祥补充说,MOSS 003 支持启用插件的能力是通过 meta instruction 来控制,类似 gpt-3.5-turbo 里的 system prompt。「因为是模型控制的,所以并不能保证 100% 控制率,以及还存在一些多选插件时调用不准、插件互相打架的缺陷,我们正在尽快开发新的模型来缓解这些问题。」

下载安装

下载本仓库内容至本地 / 远程服务器:

git clone https://github.com/OpenLMLab/MOSS.gitcd MOSS

创建 conda 环境:

conda create --name moss python=3.8
conda activate moss

安装依赖:

pip install -r requirements.txt

其中 torch 和 transformers 版本不建议低于推荐版本。

根据协议,开源的 MOSS 可用于商业用途:

d0957168d5c305962edfa7c438a4f3e8.png

此外,开发者也可通过 API 调用 MOSS 服务,团队将根据当前服务压力考虑通过 API 接口形式提供服务,接口格式可参考:https://github.com/OpenLMLab/MOSS/blob/main/moss_api.pdf

目前,已有开发者根据开源内容进行而创,比如通过 VideoChat 进行视频问答。

VideoChat 是一款多功能视频问答工具,结合了动作识别、视觉字幕和 StableLM 的功能。该工具可为视频中的任何对象和动作生成密集的描述性字幕,提供一系列语言风格以满足不同的用户偏好。它支持用户进行不同长度、情绪、语言真实性的对话。

3167320cf3f269502cc72f80adaf0367.png

项目地址:https://github.com/OpenGVLab/Ask-Anything/tree/main/video_chat_with_MOSS

本文仅做学术分享,如有侵权,请联系删文。

点击进入—>3D视觉工坊学习交流群

干货下载与学习

后台回复:巴塞罗自治大学课件,即可下载国外大学沉淀数年3D Vison精品课件

后台回复:计算机视觉书籍,即可下载3D视觉领域经典书籍pdf

后台回复:3D视觉课程,即可学习3D视觉领域精品课程

3D视觉工坊精品课程官网:3dcver.com

1.面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)
2.彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进
3.国内首个面向工业级实战的点云处理课程
4.激光-视觉-IMU-GPS融合SLAM算法梳理和代码讲解
5.彻底搞懂视觉-惯性SLAM:基于VINS-Fusion正式开课啦
6.彻底搞懂基于LOAM框架的3D激光SLAM: 源码剖析到算法优化
7.彻底剖析室内、室外激光SLAM关键算法原理、代码和实战(cartographer+LOAM +LIO-SAM)

8.从零搭建一套结构光3D重建系统[理论+源码+实践]

9.单目深度估计方法:算法梳理与代码实现

10.自动驾驶中的深度学习模型部署实战

11.相机模型与标定(单目+双目+鱼眼)

12.重磅!四旋翼飞行器:算法与实战

13.ROS2从入门到精通:理论与实战

14.国内首个3D缺陷检测教程:理论、源码与实战

15.基于Open3D的点云处理入门与实战教程

16.透彻理解视觉ORB-SLAM3:理论基础+代码解析+算法改进

17.机械臂抓取从入门到实战

重磅!粉丝学习交流群已成立

交流群主要有3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、多传感器融合、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、ORB-SLAM系列源码交流、深度估计、TOF、求职交流等方向。

扫描以下二维码,添加小助理微信(dddvisiona),一定要备注:研究方向+学校/公司+昵称,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,可快速被通过且邀请进群。原创投稿也请联系。

9ea6edb4a148820337098b1b6cb176dc.jpeg

▲长按加微信群或投稿,微信号:dddvisiona

3D视觉从入门到精通知识星球:针对3D视觉领域的视频课(三维重建系列、三维点云系列、结构光系列、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:

学习3D视觉核心技术,扫描查看,3天内无条件退款

3acb62dc418a36c7f9052834e54550c4.jpeg

高质量教程资料、答疑解惑、助你高效解决问题

觉得有用,麻烦给个赞和在看~  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值