卷积神经网络中的平移等变性分析

本文深入探讨卷积神经网络(CNN)的平移等变性,解释这一特性如何帮助CNN在图像处理中实现更好的泛化。通过证明卷积的平移等变性,阐述了为何CNN在保持模型灵活性的同时,能够捕捉图像的平移不变性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络(CNN)具有平移等变性的观点在某种程度上深入人心,但很少有人去探寻其原因或者理论根据。这篇文章将对这个问题进行系统地讲解,为后续进一步研究CNN的其他等变性和不变性设计夯实基础。

介绍

在机器学习中,我们通常关注模型的灵活性。我们希望知道选择的模型实际上能够完成我们想要的任务。例如,神经网络的通用逼近定理使我们相信神经网络可以近似任何所需精度的广泛类别的函数。但完全的灵活性也有缺点。虽然我们知道我们可以学习目标函数,但也存在许多错误的函数,它们在我们的训练数据上看起来完全一样。如果我们是完全灵活的,我们的模型可能会学习其中任何一个函数,一旦我们移开了训练数据,我们可能无法进行泛化。因此,需要对网络的灵活性加以限制。卷积神经网络是减少灵活性的一个著名成功案例。相较于早期的MLP网络,CNN的卷积牺牲了一部分灵活性,但实现了图像数据的平移等变性,这对于图像处理是十分重要的性质。

什么是平移等变性映射

简而言之,等变性映射是保留变换的代数结构的映射。作为一个特殊情况,平移等变映射是一种映射,当输入被平移时,会导致一个映射发生相应的平移,如下图所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值