痛惜!年仅38岁,著名国防专家冯旸赫执行重大任务中因车祸牺牲

来源:PaperRSS

274c1de1fb969487b63a8b65b6da329b.png

  38岁的国家某重大工程专家组组长冯旸赫牺牲!

“中国共产党优秀党员,我军优秀青年科技工作者和教育工作者,国防科技卓越青年科学基金项止获得者,某重大工程专家组组长、某重点项目首席科学家,国防科技大学系统工程专业技术上校副教授、博士生导师冯旸赫同志,在执行重大任务途中,于2023年7月1日在北京不幸牺牲,终年38岁。”

d2492d528ccf8d01748416f30ff312f0.jpeg

国防科技大学官网对冯旸赫同志的介绍:中国指控学会青年科学家奖获得者,任军委科技委重点方向专家组专家、重点项目专家组专家、中国指控学会兵棋推演与智能博弈专委会总干事、中国运筹学会智能计算分会副理事长、

2afe8143018a9b605979447830f89b67.jpeg

34ce961201b06051e40ddad418a49206.jpeg

冯旸赫,博士,国防科技大学系统工程学院副教授。美国哈佛大学统计系、爱荷华大学高性能计算实验室联合培养博士、兼任助理研究员。装备发展部武器装备人工智能专业组组长助理、智能指挥控制组秘书,军委科技委重点项目专家,“指挥控制组织设计与优化”教育部科技创新团队骨干成员,国防科技大学青年拔尖人才,中国运筹学会计算智能分会副理事长、中国指控学会智能指挥控制系统工程专委会。长期从事智能规划方面的研究,参与国家新一代人工智能战略国防应用部分的论证与规划工作,作为项目负责人承担自然科学基金、装备预研、科技委国防特区、军内科研等项目10余项;发表论文40余篇,其中以第一作者或通讯作者发表SCI检索论文15篇,EI检索18篇。以第一作者身份出版机器学习专著2部,专利授权或受理22项。

冯旸赫多个国际期刊副主编、多个军内重大工程分系统主任设计师,入选国防科技大学首批卓青培养计划。主要从事强化学习、智能博弈、智能规划、兵棋推演技术的研究,主持国家及省部级科研项目30余项,发表论文60余篇,出版著作4部。相关成果获军队科技进步二、三等奖、中国指控学会科技进步一等奖、国防科技大学青年创新奖一等奖等奖项。

“冯旸赫一直以来研究的智能任务规划技术是急需突破的重点。在无数与科研为伴的漫漫长夜中,在无数次数据分析、算法设计、实验评估过程中,智能博弈平台1.0版本诞生了,该系统可有效利用不完全的态势信息,自动选择规划时机,前推决策分支,回溯行动风险,自动形成多个备选方案。”

b712339109b7ba3bdfe193cea2642670.jpeg

e3aa08fa389fbae20f586c2e6e7bdf48.png

在众多网友的追问和好奇之下,发布相关内容的作者晒出了讣告,证明国防专家冯旸赫确实已经死亡。讣告的内容有以下几点:

其一,冯旸赫的准确死亡时间是2023年7月1日2:35,死亡的地点是在北京执行重大任务的途中。

其二,冯旸赫的遗体告别仪式举办的时间是7月15日早上8点,地点是北京八宝山殡仪馆。

其三,冯旸赫的身份是国防科技大学系统工程学院专业技术上校副教授、博士生导师,重点项目首席科学家,重大工程专家组组长,国防科技卓越青年科学基金项目获得者。

3f19d0c639adefa9fee3c8f7fe2c456e.jpeg

上述讣告内容简要地介绍了冯旸赫同志,但有一点关键信息没有透露,就是冯旸赫的具体死因是什么,为何在凌晨死亡,而且大半夜还要执行重大任务。

网友的这些好奇,使得冯旸赫死亡事件再次发酵,但冯旸赫同志治丧工作小组并没有做出回应,而相关视频评论区内,有知情网友给出了冯旸赫去世的原因。

该网友透露,7月1日凌晨2点多,冯旸赫为了重大工作任务而加班到这个时间点,在坐滴滴车回家的过程中,由于滴滴车撞上货车发生了重大车祸,导致冯旸赫身亡。

7e7309af5fe487ea4ae2853b81ee053d.jpeg

ab1c558ede2430cdb9437d2e4d91518c.jpeg

对于这么优秀的国防人才去世,而且才38岁,特别是凌晨还为国家的国防事业鞠躬尽瘁,网友们在相关视频下表达了自己的悲痛情绪,希望他能够在天堂安好,也希望其他专家在百忙工作之余也要抽时间休息,毕竟留得青山在,不怕没柴烧,国家的发展还需要他们持续一生的努力。

网友留言:

震惊!惋惜!国家栋梁、天才科学家,集无数光环于一身的优秀党员,科技、教育界优秀工作者、副教授、博导冯旸赫在7月1日执行重大任务途中因车祸不幸牺牲,年仅38岁!天妒英才!

—END—

高效学习3D视觉三部曲

第一步 加入行业交流群,保持技术的先进性

目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。[三维重建方向]NeRF、colmap、OpenMVS等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

d8ed21194bf2fa029a611d0adb18e792.jpeg
添加小助理微信:   dddvisiona ,拉你入群
第二步 加入知识星球,问题及时得到解答

针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」

学习3D视觉核心技术,扫描查看,3天内无条件退款 4dce615b379dc9dc35ecdbb68b5fa084.jpeg
高质量教程资料、答疑解惑、助你高效解决问题
第三步 系统学习3D视觉,对模块知识体系,深刻理解并运行

如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com

基础课程:

[1]面向三维视觉算法的C++重要模块精讲:从零基础入门到进阶

[2]如何学习相机模型与标定?(代码+实战)

[3]ROS2从入门到精通:理论与实战

工业3D视觉方向课程:

[1]机械臂抓取从入门到实战课程(理论+源码)

[2]从零搭建一套结构光3D重建系统[理论+源码+实践]

[3]三维点云处理:算法与实战汇总

[4]彻底搞懂基于Open3D的点云处理教程!

[5]3D视觉缺陷检测教程:理论与实战!

SLAM方向课程:

[1]如何高效学习基于LeGo-LOAM框架的激光SLAM?

[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战

[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化

[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析

[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)

[5]ORB-SLAM3理论讲解与代码精析(第2期)

视觉三维重建

[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)

自动驾驶方向课程:

[1] 深度剖析面向自动驾驶领域的车载传感器空间同步(标定)

[2]面向自动驾驶领域目标检测中的视觉Transformer

[3]单目深度估计方法:算法梳理与代码实现

[4]面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)

[5]如何将深度学习模型部署到实际工程中?(分类+检测+分割)

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制定者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大作业
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值