来源:PaperRSS
38岁的国家某重大工程专家组组长冯旸赫牺牲!
“中国共产党优秀党员,我军优秀青年科技工作者和教育工作者,国防科技卓越青年科学基金项止获得者,某重大工程专家组组长、某重点项目首席科学家,国防科技大学系统工程专业技术上校副教授、博士生导师冯旸赫同志,在执行重大任务途中,于2023年7月1日在北京不幸牺牲,终年38岁。”
国防科技大学官网对冯旸赫同志的介绍:中国指控学会青年科学家奖获得者,任军委科技委重点方向专家组专家、重点项目专家组专家、中国指控学会兵棋推演与智能博弈专委会总干事、中国运筹学会智能计算分会副理事长、
冯旸赫,博士,国防科技大学系统工程学院副教授。美国哈佛大学统计系、爱荷华大学高性能计算实验室联合培养博士、兼任助理研究员。装备发展部武器装备人工智能专业组组长助理、智能指挥控制组秘书,军委科技委重点项目专家,“指挥控制组织设计与优化”教育部科技创新团队骨干成员,国防科技大学青年拔尖人才,中国运筹学会计算智能分会副理事长、中国指控学会智能指挥控制系统工程专委会。长期从事智能规划方面的研究,参与国家新一代人工智能战略国防应用部分的论证与规划工作,作为项目负责人承担自然科学基金、装备预研、科技委国防特区、军内科研等项目10余项;发表论文40余篇,其中以第一作者或通讯作者发表SCI检索论文15篇,EI检索18篇。以第一作者身份出版机器学习专著2部,专利授权或受理22项。
冯旸赫多个国际期刊副主编、多个军内重大工程分系统主任设计师,入选国防科技大学首批卓青培养计划。主要从事强化学习、智能博弈、智能规划、兵棋推演技术的研究,主持国家及省部级科研项目30余项,发表论文60余篇,出版著作4部。相关成果获军队科技进步二、三等奖、中国指控学会科技进步一等奖、国防科技大学青年创新奖一等奖等奖项。
“冯旸赫一直以来研究的智能任务规划技术是急需突破的重点。在无数与科研为伴的漫漫长夜中,在无数次数据分析、算法设计、实验评估过程中,智能博弈平台1.0版本诞生了,该系统可有效利用不完全的态势信息,自动选择规划时机,前推决策分支,回溯行动风险,自动形成多个备选方案。”
在众多网友的追问和好奇之下,发布相关内容的作者晒出了讣告,证明国防专家冯旸赫确实已经死亡。讣告的内容有以下几点:
其一,冯旸赫的准确死亡时间是2023年7月1日2:35,死亡的地点是在北京执行重大任务的途中。
其二,冯旸赫的遗体告别仪式举办的时间是7月15日早上8点,地点是北京八宝山殡仪馆。
其三,冯旸赫的身份是国防科技大学系统工程学院专业技术上校副教授、博士生导师,重点项目首席科学家,重大工程专家组组长,国防科技卓越青年科学基金项目获得者。
上述讣告内容简要地介绍了冯旸赫同志,但有一点关键信息没有透露,就是冯旸赫的具体死因是什么,为何在凌晨死亡,而且大半夜还要执行重大任务。
网友的这些好奇,使得冯旸赫死亡事件再次发酵,但冯旸赫同志治丧工作小组并没有做出回应,而相关视频评论区内,有知情网友给出了冯旸赫去世的原因。
该网友透露,7月1日凌晨2点多,冯旸赫为了重大工作任务而加班到这个时间点,在坐滴滴车回家的过程中,由于滴滴车撞上货车发生了重大车祸,导致冯旸赫身亡。
对于这么优秀的国防人才去世,而且才38岁,特别是凌晨还为国家的国防事业鞠躬尽瘁,网友们在相关视频下表达了自己的悲痛情绪,希望他能够在天堂安好,也希望其他专家在百忙工作之余也要抽时间休息,毕竟留得青山在,不怕没柴烧,国家的发展还需要他们持续一生的努力。
网友留言:
震惊!惋惜!国家栋梁、天才科学家,集无数光环于一身的优秀党员,科技、教育界优秀工作者、副教授、博导冯旸赫在7月1日执行重大任务途中因车祸不幸牺牲,年仅38岁!天妒英才!
—END—高效学习3D视觉三部曲
第一步 加入行业交流群,保持技术的先进性
目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。[三维重建方向]NeRF、colmap、OpenMVS等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

第二步 加入知识星球,问题及时得到解答
针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」
学习3D视觉核心技术,扫描查看,3天内无条件退款
第三步 系统学习3D视觉,对模块知识体系,深刻理解并运行
如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com
基础课程:
[1]面向三维视觉算法的C++重要模块精讲:从零基础入门到进阶
工业3D视觉方向课程:
SLAM方向课程:
[1]如何高效学习基于LeGo-LOAM框架的激光SLAM?
[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战
[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化
[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析
[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)
视觉三维重建
[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)
自动驾驶方向课程:
[1] 深度剖析面向自动驾驶领域的车载传感器空间同步(标定)
[2]面向自动驾驶领域目标检测中的视觉Transformer