国内车企自动驾驶目标一个比一个激进

作者:井德  | 来源:车端

自 2019 年特斯拉引入高速领航辅助驾驶(NOA)后,ACC、LCC 等 L2 级别高速领航功能目前处于从“1 到 N”普及式渗透。

fdde447a7632c63cc6176da31829a107.jpeg

2023 年 L2+级城市 NOA 辅助驾驶开启推送元年,小鹏、理想、蔚来、华为等各企业宣布将小规模落地城市NOA 功能。其背后是国内主流的多传感器融合方案,8M 摄像头、激光雷达上车,对于高算力芯片的需求提升。据高工智能汽车,NOA(L2+)普及率有望从 1Q23 的 1.7%提升至 2025 年 17%,推升核心零部件需求。

领航辅助驾驶(NOA),即车辆在部分高速公路或高架等封闭路段行驶时,结合车载导航路线让车辆具备自动变道、自动进入和驶出匝道口的技术功能,可实现一定道路场景范围内的点到点智能驾驶。

如今不再只是在有限的示范区中以及高速中行驶的无人驾驶汽车,它现在也出现在广州、深圳、上海、北京等城市的繁华街巷。

车企和它们的供应商们,正紧锣密鼓地把这种被称为 “城市 NOA” 的导航辅助驾驶(Navigate on Autopilot)功能推广到更多城市和更多车主。

目标一个比一个激进,以今年内为时限——华为宣布要把城市 NOA 推广到 45 个城市,小鹏是 50 个,理想更是把开城竞争带到三位数:100 个。

城市NOA的推广为自动驾驶的迭代指明了方向。

原先的自动驾驶方案是需要高精地图去进行导航的,而随着技术发展,车企们更希望通过NOA技术解决方案。

提前采集和使用高精地图,是此前中国车企推广高级辅助驾驶方案时的主流做法。现在中国高速上可用的 NOA 功能大多用到了高精地图。高精地图的缺点则包括采集成本高和更新耗时长、频率低。一位图商人士称,高精地图的每公里采集成本上千元,是普通导航地图的几十倍,更新最快只能达到每季度一次。

2022 年下半年,随着特斯拉技术路线得到验证,小鹏、华为都转而研发不依赖高精地图的 BEV 方案,这需要重新写一些算法和训练感知模型。而较晚开始研发自动驾驶的车企,如理想、比亚迪等,还没有来得及在高精地图方案上投入太多资源。他们把这次技术路线转变视为追赶机会,看准时机,激进扩张。

高精地图供应商们也跟着抛出开城计划:高德、腾讯要在今年底覆盖 50 个城市,四维图新 6 月宣布已有 120 个城市过审,明年计划覆盖 150 个城市。

图商的产品已不再是车企们视为累赘的高精地图,而是要素更少、更新频次更快的地图,高德称为 HQ Live MAP,腾讯称为 HD Air 轻量级高精数据,四维图新干脆叫它高级辅助驾驶地图。

“汽车感知能力越强,地图作用就越弱,这是毫无疑问的。但是感知再强,汽车想要自动驾驶,还是需要一张地图。” 高德地图汽车业务中心总经理江睿认为,能弥补车辆感知局限、提供全局视角、且能快速更新的动态地图,会是辅助驾驶地图的最终方案。

260514653516fef1f72067cbf8c71045.png

由上图可知,车企若想实现NOA技术,需要在感知、通信、决策、执行以及云端AI训练。

因此我们的产业链梳理也由此开始:

首先是感知:

摄像头:CIS芯片【韦尔股份、思特威】、光学模组【联创电子A股唯一800M光学模组】

f8f382b0f2caef21c8c5a7416bb7953a.png

激光雷达:

e7648e278d6b7fc7d22fa8bd780ff798.png

智能座舱:

42f078e4c7c47ff9561b580a6781754b.png

HUD:

639bae9f937ec3c398a1dae6a8ed30c5.png

音响:上声电子据公司招股书,2021 年上声电子居全球扬声器出货量首位,其余国内玩家有台郁电子、航盛,主要系与海外 ASK、丰达电机、哈曼、电装等竞争。

d671d31da8033fda84174bfb408cadb1.png

最后再贴一下兴业证券整理中汽协对于相关细分领域预测的数据:

芯片:高通引领智能座舱芯片,TI、瑞萨、恩智浦成熟,国内玩家地平线、芯驰、芯掣、

瑞芯微正奋起直追。

智能座舱域控对应的是:德赛西威、经纬恒润

14dcb445d1b3ab4511af2a877cd11bb9.png

线性制动对应的是:伯特利

f563f17b6cf36a6b254f318460944235.png

ADAS摄像头对应的是:联创电子

b99e25b1723ca4ba33be5b96fadc0ed3.png

软件:国内百度、商汤、华为、虹软在机器视觉、座舱 AI 大模型上有先发优势。

数据来源:

中国车企自动驾驶最激进的时刻

【华泰证券:汽车电子:把握 NOA、大屏化和 800V三条投资主线】

【兴业证券:智能驾驶系列深度之六:AI 加持+城市 NOA 落地,高阶智能化迎来蝶变时刻】

【造车新势力:平台化降本,NOA 升级】

—END—

高效学习3D视觉三部曲

第一步 加入行业交流群,保持技术的先进性

目前工坊已经建立了3D视觉方向多个社群,包括SLAM、工业3D视觉、自动驾驶方向,细分群包括:[工业方向]三维点云、结构光、机械臂、缺陷检测、三维测量、TOF、相机标定、综合群;[SLAM方向]多传感器融合、ORB-SLAM、激光SLAM、机器人导航、RTK|GPS|UWB等传感器交流群、SLAM综合讨论群;[自动驾驶方向]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器讨论群、多传感器标定、自动驾驶综合群等。[三维重建方向]NeRF、colmap、OpenMVS等。除了这些,还有求职、硬件选型、视觉产品落地等交流群。大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

565951eed5d6b4900ada33fd96fd2f12.jpeg
添加小助理微信:cv3d007, 拉你入群
第二步 加入知识星球,问题及时得到解答

针对3D视觉领域的视频课程(三维重建、三维点云、结构光、手眼标定、相机标定、激光/视觉SLAM、自动驾驶等)、源码分享、知识点汇总、入门进阶学习路线、最新paper分享、疑问解答等进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业、项目对接为一体的铁杆粉丝聚集区,6000+星球成员为创造更好的AI世界共同进步,知识星球入口:「3D视觉从入门到精通」

学习3D视觉核心技术,扫描查看,3天内无条件退款 6d0365903903391d2b0ba391ca68a3d5.jpeg
高质量教程资料、答疑解惑、助你高效解决问题
第三步 系统学习3D视觉,对模块知识体系,深刻理解并运行

如果大家对3D视觉某一个细分方向想系统学习[从理论、代码到实战],推荐3D视觉精品课程学习网址:www.3dcver.com

基础课程:

[1]面向三维视觉算法的C++重要模块精讲:从零基础入门到进阶

[2]如何学习相机模型与标定?(代码+实战)

[3]ROS2从入门到精通:理论与实战

[4]彻底理解dToF雷达系统设计[理论+代码+实战]

工业3D视觉方向课程:

[1](第二期)从零搭建一套结构光3D重建系统[理论+源码+实践]

[2]机械臂抓取从入门到实战课程(理论+源码)

[3]三维点云处理:算法与实战汇总

[4]彻底搞懂基于Open3D的点云处理教程!

[5]3D视觉缺陷检测教程:理论与实战!

SLAM方向课程:

[1]深度剖析面向机器人领域的3D激光SLAM技术原理、代码与实战

[1]彻底剖析激光-视觉-IMU-GPS融合SLAM算法:理论推导、代码讲解和实战

[2](第二期)彻底搞懂基于LOAM框架的3D激光SLAM:源码剖析到算法优化

[3]彻底搞懂视觉-惯性SLAM:VINS-Fusion原理精讲与源码剖析

[4]彻底剖析室内、室外激光SLAM关键算法和实战(cartographer+LOAM+LIO-SAM)

[5](第二期)ORB-SLAM3理论讲解与代码精析

视觉三维重建

[1]彻底搞透视觉三维重建:原理剖析、代码讲解、及优化改进)

自动驾驶方向课程:

[1] 深度剖析面向自动驾驶领域的车载传感器空间同步(标定)

[2]面向自动驾驶领域目标检测中的视觉Transformer

[3]单目深度估计方法:算法梳理与代码实现

[4]面向自动驾驶领域的3D点云目标检测全栈学习路线!(单模态+多模态/数据+代码)

[5]如何将深度学习模型部署到实际工程中?(分类+检测+分割)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值