Transformer是如何应用于自动驾驶领域的?

说到纯视觉的自动驾驶方案,大家第一个想到的就是Tesla吧。的确,早在2021年,Tesla就已经实现了纯视觉的BEV检测方案,而且效果非常好。

bcf969f2d2d1371a50b4a5babea203fc.png

细心的同学可能发现了,这套BEV方案中将相机空间的图像转换到BEV空间的核心组件就是Transformer。

Transformer来源于自然语言处理领域,首先被应用于机器翻译。后来,大家发现它在计算机视觉领域效果也很不错,而且在各大排行榜上碾压CNN网络。

a0f74fee26a655da2e42212e81ff4397.png

目标检测领域中,视觉Transformer不仅可以实现2D检测、3D检测,还可以实现多模态检测,BEV视角下的检测,性能也非常出色。

ed12dd1a8a654cd5a8f82e3ed47d22e1.png

因此,掌握Transformer相关知识和工程基础成为了企业招聘算法工程师的一个技能要求点,也是简历上的一个很大的加分项。

然而,想要掌握基于Transformer的目标检测算法,有以下3个难点

  • 理解Transformer背后的理论基础,比如自注意力机制(self-attention), 位置编码(positional embedding),目标查询(object query)等等,网上的资料比较杂乱,不够系统,难以通过自学做到深入理解并融会贯通。5480762611b9459f9b4cb0827e20ac7f.png

  • 掌握基于Transformer的目标检测算法的思路和创新点,一些Transformer论文涉及的新概念比较多,话术没有那么通俗易懂,读完论文仍然不理解算法的细节部分。

6cf041291e8cc496c9f25181c7588ffb.png
2
  • Transformer代码不易看懂,因为作用机制与CNN有不少差别,所以完全理解代码并实践应用需要花费很大功夫。

078a63cf2b78326d7a94d418cc6ea07b.png
3

那么如何学习基于Tansformer的目标检测算法呢?

3D视觉工坊联合讲师「语嫣」,为大家精心准备了课程「目标检测中的视觉Transformer」,主要帮助各位同学解决以上这些难点。

不仅为大家详细讲解视觉Transformer的基础知识,各种经典的基于Transformer的目标检测算法,还配有代码解读和实践课程,让大家真正活学活用,理解和掌握这些知识理论。

实践部分

9fdaa84e791e53806db81f9c7cc44504.png 4f8b06bb51aedfba9f2859c16ab7f169.png 57e35f0cebb01e46ea6c22c1e919c4db.jpeg 830f677a18e020f2a4019d95c556b8f8.jpeg 138fb4963e6df43b7693b7f4cc407189.jpeg efe6394a1210bfcce9f7ef41c6687d9f.jpeg 389f2e6e7195c72356bd8e80dd8685a9.png 1f74aac4cf34c2962e32069ad3b3a3ad.png 05f5b953feb3dcc92d42c4728582242a.png

7b716f3f16c3109b3f89d23c137bae17.png

6929af9df4b6e91d17c4f603e1868ceb.jpeg d2a50821c26cfcab7580b6d39ef1e724.jpeg 86b6186a74958228b4cb9f0818abc9dd.jpeg

开课时间

2023年7月28日晚八点(周五),每周更新一章节。

课程答疑

本课程答疑主要在本课程对应的鹅圈子中答疑,学员学习过程中,有任何问题,可以随时在鹅圈子中提问。

a3c2f0c6e0781511d481a45df52412c8.png
▲长按购买课程, 前50名,享早鸟价,立减30元
9a99223e9197a05db70968fc2238970a.jpeg
▲长按添加小助理微信:cv3d007,咨询更多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值