ivy_reny
码龄10年
关注
提问 私信
  • 博客:618,986
    社区:7
    618,993
    总访问量
  • 66
    原创
  • 1,157,225
    排名
  • 608
    粉丝
  • 3
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-10-09
博客简介:

ivy_reny的专栏

查看详细资料
个人成就
  • 获得589次点赞
  • 内容获得65次评论
  • 获得3,553次收藏
  • 代码片获得119次分享
创作历程
  • 9篇
    2018年
  • 52篇
    2017年
  • 7篇
    2016年
  • 43篇
    2015年
  • 4篇
    2014年
成就勋章
TA的专栏
  • 机器学习
    24篇
  • 计算机体系结构
    14篇
  • SoC
    6篇
  • 嵌入式
    25篇
  • Android
    7篇
  • 数字图像处理算法
    6篇
  • H.264
    7篇
  • 编程
    4篇
  • 网络
    5篇
  • 硬件
    1篇
  • MTK
    3篇
  • gem5
    11篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习之集成学习(七)随机森林scikit-learn库

一、scikit-learn随机森林类库概述        在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor。RF的变种Extra Trees也有 分类类ExtraTreesClassifier,回归类ExtraTreesRegressor。由于RF和Extra Trees的区别较小,调参方法基本相同,本文...
转载
发布博客 2018.02.09 ·
2895 阅读 ·
1 点赞 ·
1 评论 ·
14 收藏

机器学习之集成学习(六)Bagging与随机森林

集成学习有两个系列,一个是boosting系列,它的特点是各个弱学习器之间有依赖关系。另一个是bagging系列,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。本文就对集成学习中Bagging与随机森林算法做一个总结。        随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力。一、Bagging原理
转载
发布博客 2018.02.08 ·
1500 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

机器学习之集成学习(五)GBDT算法scikit-learn库

参考:http://www.cnblogs.com/pinard/p/6143927.html一、GBDT类库概述        在scikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同。这些参
转载
发布博客 2018.02.08 ·
1524 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

机器学习之集成学习(四)GBDT

一、概述        GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。GBDT的思想使其具有天然优势可以发现多种有
原创
发布博客 2018.02.08 ·
2285 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

机器学习之集成学习(三)AdaBoost算法scikit-learn库

参考:https://www.cnblogs.com/pinard/p/6136914.html一、AdaBoost类库概述        scikit-learn中AdaBoost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归。
转载
发布博客 2018.01.24 ·
2513 阅读 ·
2 点赞 ·
1 评论 ·
15 收藏

机器学习之集成学习(二)AdaBoost算法

一、boosting算法的基本原理        集成学习器根据个体学习器的生成是否存在依赖关系,可以分为两类:个体学习器间存在强依赖关系,必须串行生成,代表算法是boosting系列算法;个体学习器之间不存在强依赖关系,可以并行生成,代表算法是bagging和随机森林系列算法。在boosting系列算法中,AdaBoost是最著名的算法之一。AdaBoost既可以用作分类,也可以用作回归。
原创
发布博客 2018.01.24 ·
5047 阅读 ·
5 点赞 ·
1 评论 ·
20 收藏

机器学习之集成学习(一)Ensemble Learning

一、集成学习概述        集成学习通过构建并结合多个学习器来完成学习任务。通过将多个学习器结合,常可以获得比单一学习器显著优越的泛化性能,达到博采众长的目的。         集成学习有两个主要的问题需要解决:1、如何训练每个学习器?2、如何融合各个学习器?二、个体学习器        要获得好的学习器,个体学习器应“好而不同”,即个体学习器要有一定的准确性,并且
原创
发布博客 2018.01.23 ·
802 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习之朴素贝叶斯Naïve Bayes (二) scikit-learn算法库

参考:http://www.cnblogs.com/pinard/p/6074222.html一、scikit-learn 朴素贝叶斯类库概述        朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树、KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有三个朴素
转载
发布博客 2018.01.23 ·
1439 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习之朴素贝叶斯Naïve Bayes (一)

一、贝叶斯定理        贝叶斯分类是一类分类算法的总称,这类算法以贝叶斯定理为基础,故统称为贝叶斯分类。贝叶斯定理解决了现实生活中经常遇到的问题:已知某条件概率,如何得到事件交换后的概率,即在已知P(A|B)的情况下求得P(B|A)。条件概率P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B条件下发生事件A的条件概率。其基本求解公式为:P(A|B)=P(AB)/P(B)
原创
发布博客 2018.01.22 ·
1789 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习之支持向量机SVM Support Vector Machine (六) 高斯核调参

参考:http://www.cnblogs.com/pinard/p/6126077.html        在支持向量机(以下简称SVM)的核函数中,高斯核(以下简称RBF)是最常用的,理论上 RBF一定不比线性核函数差,但是在实际应用中,却面临几个重要超参数的调优问题。如果调的不好,可能比线性核函数还要差。所以实际应用中,能用线性核函数得到较好效果的都会选择线性核函数。如果线性核效
转载
发布博客 2017.12.22 ·
2901 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

机器学习之支持向量机SVM Support Vector Machine (五) scikit-learn算法库

参考:http://www.cnblogs.com/pinard/p/6117515.html一、scikit-learn SVM算法库概述        scikit-learn中SVM的算法库分为两类,一类是分类算法库,包括SVC、 NuSVC和LinearSVC三个类。另一类是回归算法库,包括SVR、NuSVR和LinearSVR三个类。相关的类都包裹在sklearn.s
转载
发布博客 2017.12.22 ·
1210 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习之支持向量机SVM Support Vector Machine (四) SMO算法

基本思想序列最小最优化算法(Sequential Minimal Optimization, SMO)。优化目标函数:min┬a⁡〖1/2 ∑_(i=1)^m▒∑_(j=1)^m▒〖a_i a_j y_i y_j K(x_i,x_j ) 〗-〗 ∑_(i=1)^m▒a_i s.t.∑_(i=1)^m▒〖a_i y_i=0〗〖0≤a〗_i≤C, i=1,2,…m解需要满足的KKT
原创
发布博客 2017.12.21 ·
587 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

机器学习之支持向量机 (三) SVM回归模型Support Vector Regression (SVR)

SVM回归模型的损失函数SVM不仅可以用于分类模型,也可以用于回归模型。回顾SVM分类模型,目标函数是1/2 ‖w‖^2最小,同时让训练集的数据点尽量远离自己类别一边的支持向量,即y_i (w∙ϕ(x_i )+b)≥1。如果加入松弛变量ξ_i≥0,则目标函数是1/2 ‖w‖^2+C∑_(i=1)^m▒ξ_i ,对应的约束条件是y_i (w∙ϕ(x_i )+b)≥1-ξ_i回归模型的优化目标
原创
发布博客 2017.12.21 ·
10736 阅读 ·
1 点赞 ·
0 评论 ·
26 收藏

机器学习之支持向量机SVM Support Vector Machine (二) 非线性SVM模型与核函数

求解线性分类问题,线性SVM是一种非常有效的方法,但是有时分类问题是非线性的,这时可以使用非线性SVM。非线性问题往往不好求解,希望能用解线性分类问题的方法解决这个问题,可以采用非线性变换,将非线性问题变换为线性问题,通过解决变换后的线性问题的方法求解原来的非线性问题。在线性回归中,可以将多项式回归转化为线性回归。比如一个只有两个特征的p次多项式回归模型:h_θ (x_1,x_2 )=θ_
原创
发布博客 2017.12.21 ·
1077 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

机器学习之支持向量机SVM Support Vector Machine (一) 线性SVM模型与软硬间隔

一、简介        SVM是一种二类分类模型,它的目标是利用训练数据集的间隔最大化找到最优分离超平面。SVM还包括核技巧,使它成为非线性分类器。        SVM学习方法包含由简至繁的模型:线性可分SVM(硬间隔SVM)、线性SVM(软间隔SVM)、非线性SVM。二、间隔与支持向量        给定训练样本集,分类学习的目标是基于训练集D在样本空间找到一个分离超平面,将不
原创
发布博客 2017.12.15 ·
1543 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

机器学习之线性回归 Linear Regression(三)scikit-learn算法库

参考http://www.cnblogs.com/pinard/p/6026343.html        scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。        线性回归的目的是要得到输出向量Y和输入特征X之间的线性关系,求出线性回归系数θ,也就是
转载
发布博客 2017.12.11 ·
5187 阅读 ·
2 点赞 ·
0 评论 ·
12 收藏

机器学习之逻辑回归 Logistic Regression(三)scikit-learn算法库

参考http://www.cnblogs.com/pinard/p/6035872.html1、概述        在scikit-learn中,与逻辑回归有关的主要是这3个类。LogisticRegression, LogisticRegressionCV 和logistic_regression_path。其中LogisticRegression和LogisticRegress
转载
发布博客 2017.12.11 ·
4165 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

机器学习之决策树 Decision Tree(三)scikit-learn算法库

参考http://www.cnblogs.com/pinard/p/6056319.html1、scikit-learn决策树算法类库介绍        scikit-learn决策树算法类库内部实现是使用了调优过的CART树算法,既可以做分类,又可以做回归。分类决策树的类对应的是DecisionTreeClassifier,而回归决策树的类对应的是DecisionTreeRegres
转载
发布博客 2017.12.08 ·
5836 阅读 ·
3 点赞 ·
1 评论 ·
22 收藏

机器学习之决策树 Decision Tree(二)Python实现

计算给定数据集的熵from math import log# 计算给定数据集的熵def calcShannonEnt(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: # 为所有可能分类创建字典 currentLabel = featVec[-1] # 最后一列数据为键值
原创
发布博客 2017.12.08 ·
831 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

机器学习之决策树 Decision Tree(一)

一、决策树        决策树是一个树结构(可以是二叉树或非二叉树),每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,按照其值选择输出分支,直到到达叶节点,将叶节点存放的类别作为决策结果。二、决策树的构造        构造决策树的关键步骤是在某个节点处
原创
发布博客 2017.12.07 ·
2060 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏
加载更多