深度思考:工业异常检测中如何摆脱特定阈值的限制?

文章提出Test Time Training for Anomaly Segmentation (TTT4AS)方法,解决工业质量控制中异常检测分割任务的问题。现有方法在生成异常分数地图后,依赖阈值二值化,导致分割性能下降。TTT4AS利用异常样本特征训练分类器,提高分割准确性和鲁棒性,适用于多种AD&S方法。实验表明,TTT4AS在MVTec AD和MVTec 3D-AD数据集上优于基线方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)最新顶会论文计算机视觉书籍优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

fe01b4df577051d762f55056eabbcb02.jpeg

0.这篇文章干了啥?

这篇文章提出了一种名为Test Time Training for Anom

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值