点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
来源:3D视觉工坊
添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群
扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

0.这篇文章干了啥?
这篇文章主要贡献在于建立了褶皱缺陷的中观力学模型,并推导了褶皱复合材料的有效刚度,然后将这一有效刚度应用于有限元分析中,以预测褶皱区域的面外位移响应。实验方面,对比了剪切摄影和条纹投影两种方法在测量褶皱缺陷时的灵敏度和准确性。针对不同尺度的褶皱缺陷,提出了不同的位移测量方法。对剪切摄影和条纹投影的实验结果与有限元分析结果进行了对比分析,评估了两种方法的测量精度。结论部分指出,剪切摄影在灵敏度上优于条纹投影,但在某些工业场景下,条纹投影也具有其优势。实验结果表明,这两种方法在位移测量精度上具有相似性。
下面一起来阅读一下这项工作~
1. 论文信息
论文题目:Experimental investigation of trans-scale displacement responses of wrinkle defects in fiber reinforced composite laminates
作者:Li Ma, Shoulong Wang等
作者机构:Institute of Applied Mechanics, Zhejiang University of Technology,Institute of Process Equipment, Zhejiang University
论文链接:https://arxiv.org/pdf/2405.12676
2. 摘要
皱纹缺陷在工业产品领域广泛存在,如风力涡轮机叶片和纤维缠绕复合材料压力容器。皱纹波长的大小从几毫米到一百多毫米不等。定位皱纹缺陷并测量其响应对含有皱纹缺陷结构的评估非常重要。基于均匀化方法提出了一种用于获得梯度皱纹有效刚度的介观力学模型。有限元仿真预测了皱纹层压板面外位移的跨尺度响应,最大位移范围从纳米级到毫米级。这样的跨尺度效应需要不同的测量方法来观察位移响应。在此,我们分别采用剪切散斑干涉(Shearography)和条纹投影轮廓测量法(FPP)根据不同的位移量级进行测量。在FPP方法中,提出了一种位移提取算法来获得面外位移。比较了剪切散斑干涉和FPP的测量灵敏度和精度,为工业无损检测提供了定量参考。

3. 效果展示
一种具有剪切散斑系统的实验装置。

拉伸试验中Ⅰ、Ⅱ试样的条纹图。

解包裹和积分过程以获得离面位移。


FPP三维形状测量示意图。

试样Ⅰ的离面位移(单位:cm):(a)ΔF= 200 N,(B)ΔF= 400 N,(c)ΔF= 600 N,(d)ΔF= 800 N,(e)ΔF= 1000 N。


剪切散斑测量与有限元分析的比较。

4. 主要贡献
建立了皱褶缺陷的细观力学模型:通过建立细观力学模型,本文成功描述了皱褶缺陷的力学特性,特别是有效刚度的计算。这为后续的有限元分析提供了基础。
有限元分析预测面外位移响应:将获得的有效刚度植入有限元分析中,本文预测了皱褶区域在不同拉伸载荷下的面外位移响应,显示出该区域对拉伸载荷的高度敏感性。
实验验证不同位移测量方法的有效性:本文通过实验对比了剪切摄影(Shearography)和条纹投影(FPP)两种方法测量面外位移的效果。结果表明,剪切摄影在低载荷下更为灵敏,而FPP方法在较大变形情况下更具优势。
误差分析:通过与有限元分析结果的比较,本文提供了剪切摄影和FPP方法的误差范围,分别为3.3%~7.1%和4.1%~15.6%,验证了两种方法在测量精度上的可行性和相似性。
为工业无损检测提供数据支持:本文的实验数据和误差分析为未来在工业无损检测中选择合适的位移测量方法提供了量化参考,有助于研究人员根据具体需求选择合适的测量方法。
5. 基本原理是啥?
细观力学模型:
皱褶缺陷的细观力学模型:通过建立皱褶缺陷的细观力学模型,描述了复合材料在皱褶区域的力学性能,特别是有效刚度的计算。有效刚度是指材料在存在皱褶缺陷情况下的力学响应特性。
有限元分析(FEA):
利用有限元分析方法预测皱褶区域在不同载荷下的面外位移响应。有限元分析是一种数值计算方法,用于模拟材料或结构在外力作用下的响应。在本文中,有限元分析被用于研究不同结构参数和皱褶尺寸对位移响应的影响。位移测量方法:
剪切摄影(Shearography):利用He-Ne激光照射试样,通过米歇尔逊干涉仪将试样表面的两个不同点的光束在焦平面上叠加,从而测量面外位移。剪切摄影在小位移测量(纳米级)上具有高灵敏度。
条纹投影(FPP):利用投影条纹在试样表面形成的变形条纹图案,通过相位展开和形状重建技术获取三维点云数据,再通过算法计算面外位移。条纹投影适用于较大变形的测量(毫米级)。
实验验证和误差分析:
通过实验对比剪切摄影和条纹投影两种方法的测量结果,并与有限元分析结果进行对比,进行误差分析。误差分析表明,两种方法在测量精度上具有相似性,分别为3.3%~7.1%(剪切摄影)和4.1%~15.6%(条纹投影)。不同位移测量方法的适用性:
根据皱褶缺陷的不同尺寸和结构参数,选择合适的位移测量方法。剪切摄影适用于纳米级的位移测量,而条纹投影适用于毫米级的位移测量。本文提供的数据和分析为在不同工业应用中选择合适的测量方法提供了依据。



6. 实验结果
本文实验部分主要包括剪切摄影(Shearography)和条纹投影(FPP)两种方法的实验结果及比较:
剪切摄影实验结果:
实验设置:试样固定在Instron试验机上,被He-Ne激光照射,通过米歇尔逊干涉仪将试样表面的两个不同点的光束在焦平面上叠加,从而测量面外位移。
实验观察:实验得到了试样表面的相位图,对应于试样的面外位移导数,即试样表面的形变情况。随着张力载荷的增加,条纹的间距逐渐变窄。
数据处理:通过相位展开过程,消除了相位条纹的不连续性,得到了连续的面外位移分布。选择试样底部的一个任意点作为参考点,通过定积分计算得到面外位移的最大值。实验结果显示,试样I的最大位移范围为350纳米至1500纳米,试样II的最大位移范围为500纳米至2400纳米。
条纹投影实验结果:
实验设置:试样固定在Instron试验机上,通过激光器投射伪正弦条纹图案在试样表面上,并通过CCD相机捕获变形图案。
实验观察:实验得到了试样表面的三维点云数据,反映了试样在不同张力载荷下的表面形变情况。通过3D点云数据的相位展开和形状重建,得到了连续的面外位移分布。
数据处理:通过立方样条插值法获得了在X-Y平面上相同网格中的高度值,然后将两组新的点云进行减法操作,得到了精确的面外位移。实验结果显示,试样I的最大位移范围为0.065毫米至0.280毫米,试样II的最大位移范围为0.5毫米至2.4毫米。
方法比较及误差分析:
对比实验结果表明,剪切摄影的灵敏度远高于条纹投影,剪切摄影可以在非常小的张力载荷下捕获位移响应,而条纹投影需要增加至200N~1000N的载荷才能测量到相应的位移。
误差分析显示,剪切摄影和有限元分析之间的误差为3.3%~7.1%,而条纹投影和有限元分析之间的误差为4.1%~15.6%,表明两种方法在位移测量精度上具有相似性。






7. 总结 & 未来工作
皱褶缺陷广泛存在于风力涡轮叶片、纤维缠绕复合压力容器和其他层压结构中。本文建立了皱褶缺陷的细观力学模型,获得了皱褶复合材料的有效刚度,并将其植入有限元分析(FEA)中以预测面外位移响应。数值模拟显示,皱褶区域的面外位移对拉伸载荷高度敏感。嵌入试样中的不同尺寸的皱褶缺陷导致的位移范围为102~106纳米,对面外位移测量方法提出了不同的要求。
有三种方法可以用于测量面外位移。其中,ESPI适用于位移在103纳米水平内的测量,3D DIC适用于微米级别的测量,而FPP方法可以用于毫米级甚至更大的位移测量。由于DIC方法的广泛使用,本文主要关注剪切摄影和FPP方法,并进行了实验研究。实验结果显示,剪切摄影的灵敏度远高于FPP。对于相同的薄壁试样,剪切摄影在小于10N的拉伸力下就能产生可检测的响应。而采用FPP方法时,载荷需要增加到200N~1000N,才能测量相应的位移。然而,这并不意味着剪切摄影绝对优于FPP,因为在某些工业场景中,刚体位移可能很大,会破坏散斑干涉条纹的可见性。
与FEA的比较表明,剪切摄影和FPP的误差分别为3.3%~7.1%和4.1%~15.6%,这表明这两种方法在测量精度上具有相似的水平。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉工坊交流群
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、大模型、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
大模型:NLP、CV、ASR、生成对抗大模型、强化学习大模型、对话大模型等
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
除了这些,还有求职、硬件选型、视觉产品落地、最新论文、3D视觉最新产品、3D视觉行业新闻等交流群
添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3D视觉工坊知识星球
3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪,无人机等。

3D视觉相关硬件
图片 | 说明 | 名称 |
---|---|---|
![]() | 硬件+源码+视频教程 | 精迅V1(科研级))单目/双目3D结构光扫描仪 |
![]() | 硬件+源码+视频教程 | 深迅V13D线结构光三维扫描仪 |
![]() | 硬件+源码+视频教程 | 御风250无人机(基于PX4) |
![]() | 硬件+源码 | 工坊智能ROS小车 |
![]() | 配套标定源码 | 高精度标定板(玻璃or大理石) |
添加微信:cv3d007或者QYong2014 咨询更多 |
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~