成本降低超过35%!波士顿大学最新UVA边缘部署的联合优化框架!

点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群

扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!

edacc46ae4fd160a35b0e3e13e2aedde.jpeg

0.这篇文章干了啥?

这篇文章提出了一种联合优化框架,旨在降低无人机辅助雾计算系统中的操作效率成本。该框架包含多个模块,包括无人机姿态控制、三维空间中的轨迹规划和任务分配。文章设计了一种新型的模糊PID控制机制用于姿态控制,并提出了ACS-DS算法来解决传统轨迹规划方法中的收敛问题,同时改进了粒子群优化(PSO)算法以优化任务分配。通过广泛的实验验证,结果显示,提出的框架能够将操作效率成本降低超过35%相较于现有方法。

下面一起来阅读一下这项工作~

1. 论文信息

论文题目:A Holistic Optimization Framework for Energy Efficient UAV-assisted Fog Computing: Attitude Control, Trajectory Planning and Task Assignment

作者:Shuaijun Liu, Jinqiu Du等

作者机构:Boston University等

论文链接:https://arxiv.org/pdf/2407.14894

2. 摘要

无人机(UAV)通过充当灵活的计算平台和通信移动中继,显著提升了雾计算的性能。在本文中,我们提出了一个整体优化框架,用于在具有不同地形高程和动态任务生成的三维空间域中,联合优化无人机辅助雾计算的总延迟和能量消耗。我们提出的框架考虑了三个重要且相互依赖的模块:姿态控制、轨迹规划和任务分配。我们首先建立了一个模糊比例-积分-微分(PID)控制模型,以确定无人机的姿态。然后,我们提出了一种改进的蚁群算法(ACS),该算法包括安全值和解耦机制,以克服经典ACS中的收敛问题,从而计算无人机的最佳轨迹。最后,我们设计了一种基于粒子群优化技术的算法,以确定每个卸载任务的执行位置。在我们提出的框架下,一个模块的结果将影响其他模块的决策,提供了系统的整体视角,从而导致更好的解决方案。我们通过大量仿真结果证明,与现有基准方法相比,我们提出的框架能够显著改善整体性能,具体表现为延迟和能量消耗的降低。

3. 效果展示

无人机辅助雾计算网络的结构。

1deac2ba5a1ef88b8d7f59c5f7f605f8.png

4. 主要贡献

  • 我们提出了一个包含姿态控制、轨迹规划、资源分配和任务分配等多个模块的整体框架,以优化三维空间域中无人机辅助雾计算的整体能源效率,考虑了不同的地形高程。根据我们所知,这是首次将这些模块一起考虑,并利用其复杂的相互连接。通过整合和协调这些模块,我们提出的框架能够在无人机辅助雾计算的动态和复杂环境中实现最佳性能和能源效率。

  • 我们建立了一个用于四旋翼无人机姿态控制的模糊比例-积分-微分(PID)模型。与现有研究中常用的经典PID控制相比,模糊PID控制能够捕捉参数之间的依赖关系,并适应动态环境。我们证明了模糊PID控制能够有效提高起飞、巡航和着陆阶段的稳定性,从而减少无人机辅助雾计算中的延迟和能量消耗。

  • 我们提出了一种计算高效的算法,称为ACS-DS(带有解耦和安全值的ACS),以在ACS算法中引入解耦和安全值机制,克服经典ACS在无人机轨迹规划问题中常见的慢收敛和局部最优问题。我们证明了该算法的收敛性,并通过数值实验展示了其相对于经典ACS的收敛性能优势。

  • 我们提出了一种基于粒子群优化(PSO)思想的启发式算法,解决无人机辅助雾计算中的资源分配和任务分配的联合优化问题,前提是已经确定了无人机的初始轨迹。该启发式算法能够克服非凸优化问题中的复杂性,并高效地获得最佳任务分配和资源分配决策。

  • 通过大量数值实验,我们展示了我们提出的整体框架能够将整体操作效率成本减少超过58%,相较于基准实现。

5. 基本原理是啥?

  • 联合优化框架:文章提出了一种联合优化的框架,旨在减少无人机辅助雾计算系统中的操作效率成本。这个框架结合了多个模块来全面提升系统的效率。

  • 模块化设计:

姿态控制:使用模糊PID控制机制来实现无人机的有效姿态控制,确保无人机能够稳定飞行,并且适应不断变化的三维空间环境。

轨迹规划:提出了ACS-DS算法,用于在三维空间域中进行轨迹规划,克服了传统方法在此类环境下的收敛问题。该算法通过解耦和安全值机制提高轨迹规划的效率。

任务分配:修改了粒子群优化(PSO)算法来确定最优的计算任务分配方案,从而提高计算资源的利用效率。

三维空间和地形适应:在三维空间域中进行轨迹规划,并考虑地形高度的连续变化,以确保无人机能够有效地避开障碍物并优化飞行路径。

  • 综合集成:将上述模块和算法综合集成在一起,形成一个整体解决方案,以提升无人机辅助雾计算系统的总体效率。

  • 性能评估:通过广泛的实验验证,显示出所提出的框架相较于现有方法,能够将操作效率成本降低超过35%。

b7ffccf059d503d208a8ba83385fab67.png b935feb5750bc869f0ab13e6ec2f5f91.png 6151f3a09a254ed6a02f77990dcb54a7.png fd6490b76d75765a47b46e47361d9a99.png 3ec599e6a4a25dbcaf6b2726aa705dea.png

6. 实验结果

  • 最佳螺旋桨参数:

图7展示了整体能耗与螺旋桨叶片参数(包括叶片数量、半径、宽度、安装角度和厚度)的关系。在保持其他参数固定的情况下,对于总质量为80公斤的对称四旋翼无人机,配置两片半径为500毫米、宽度为250毫米、厚度为7.5毫米的螺旋桨是最优的。这种配置下的平均能耗比50组在各参数允许范围内随机生成的参数的平均值减少了30%以上。

74b04b92071981c0b7802c363e2748ec.png
  • 算法收敛速度:

图8展示了经典ACS、ACS-D和ACS-DS在80次迭代中的200次独立运行的平均收敛速度。结果表明,解耦机制和安全值机制可以减少无人机移动的能耗。具体地,ACS-D相较于经典ACS,收敛速度提高了7%以上,而ACS-DS的改进则超过了15%。

335623c0bd766c51388a5e9bcb679974.png
  • 轨迹规划:

图9和图10展示了生成的地形高度作为连续表面(禁飞区)在三维空间中的效果。为了测试我们提出的轨迹规划和姿态控制算法的避障能力,将MDs放置在地面上以适应地形高度。从图中可以观察到,解耦和安全值机制以及姿态控制(ATC)对最终路径有积极影响。特别地,ATC通过实时优化无人机旋翼速度,基于传感器反馈的误差和环境信息,实现了更稳定和精确的飞行控制。通过结合ACS、解耦、安全值和姿态控制,ACS-DS+ATC实现了所有方案中最平滑和最短的轨迹。

f14ec79b3d7f09d624dc375c02a2e6b1.png 89a63b2aa04d87bab9733a70ba83c445.png
  • 操作效率成本:

图11展示了八种实现方案的操作效率成本(结合延迟和能耗)结果。解耦机制和安全值机制使得ACS-DS的整体消耗显著低于经典ACS。此外,我们提出的姿态控制机制(ATC)可以进一步改善性能,无论使用ACS、ACS-D还是ACS-DS。总体来看,ACS-DS+ATC相较于RAN和经典ACS,分别减少了超过58%和35%的操作效率成本。

375efb825d9a693bf754682cacb53bd1.png

7. 总结 & 未来工作

在本文中,我们提出了一个联合优化框架,以减少无人机辅助雾计算系统中的操作效率成本。我们提出的框架包含多个模块,包括四旋翼无人机的姿态控制、在具有连续变化地形高度的三维空间域中的轨迹规划,以及将计算任务高效地分配到网络中不同组件的方案。我们为框架中的每个模块设计了适当的机制或算法,并将它们整合在一起,以获得一个全面的解决方案,从而提高无人机辅助雾计算的整体效率。具体而言,我们提出了一种新型的模糊PID控制机制用于有效的姿态控制,设计了ACS-DS算法来克服传统方法在三维域轨迹规划中的收敛问题,并修改了PSO算法以确定最优任务分配。来自各种实验的数值结果表明,与现有方法相比,我们提出的框架能够将操作效率成本降低超过35%。

本文仅做学术分享,如有侵权,请联系删文。

d7894f254aec7f5d605827c1bb28f7d6.jpeg

3D视觉交流群,成立啦!

目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等

最前沿:具身智能、大模型、Mamba、扩散模型等

除了这些,还有求职硬件选型视觉产品落地、产品、行业新闻等交流群

添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

2bc1edda11dbc7eb72044d62e34cc866.png
▲长按扫码添加助理:cv3d008
3D视觉工坊知识星球

「3D视觉从入门到精通」知识星球,已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

862efc1ff6739498cc8565ef241f5fed.jpeg

▲长按扫码加入星球
3D视觉工坊官网:www.3dcver.com

具身智能、3DGS、NeRF结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真C++、三维视觉python、dToF、相机标定、ROS2机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

dedb5954e68922250b9870afa917e3d3.jpeg
▲ 长按扫码学习3D视觉精品课程
3D视觉模组选型:www.3dcver.com

885e8bb467084803b03fe2c48fe4875a.png

—  —

点这里👇关注我,记得标星哦~

一键三连「分享」、「点赞」和「在看」

3D视觉科技前沿进展日日相见 ~ 

outside_default.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值