点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
来源:3D视觉工坊
添加小助理:cv3d001,备注:方向+学校/公司+昵称,拉你入群。文末附3D视觉行业细分群。
扫描下方二维码,加入「3D视觉从入门到精通」知识星球(点开有惊喜),星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门秘制视频课程、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
从手机随手拍,汽车行车记录仪到无人机航拍,如何从海量无序二维图像快速生成高精度三维场景?传统方法依赖精确的相机位姿参数,实际应用成本高昂。港科广团队提出全新框架GraphGS,突破技术瓶颈——无需精准相机位姿,仅凭RGB图像即可实现大规模开放场景的高效重建和高保真新视角合成,相关论文入选ICLR 2025,代码即将开源。
论文标题:Graph-Guided Scene Reconstruction from Images with 3D Gaussian Splatting
项目主页:https://3dagentworld.github.io/graphgs/
技术痛点与突破
传统方法瓶颈
现有三维重建技术通常依赖精确的相机位姿参数和密集视角覆盖,而实际应用中,由于设备限制或环境复杂性,获取高精度位姿和充足视角面临巨大挑战。例如,COLMAP等传统SfM工具处理千张级图像需要数天时间,且容易因动态物体或重复纹理导致匹配失败。此外,稀疏视角下3D高斯点易过拟合到有限视角区域,导致几何失真和细节丢失。
GraphGS核心突破
GraphGS通过创新的空间先验感知与图引导优化范式,提出三阶段解决方案:首先利用数学策略从无序图像中快速构建相机拓扑图;其次通过多视角一致性约束强化几何连贯性;最后结合自适应采样策略动态优化高斯点分布。该方法在保障精度的同时,将千张图像的重建时间从数十小时缩短至数小时。
方法详解:
GraphGS的核心在于将复杂的场景重建问题转化为图结构优化问题。框架首先通过同心圆近邻配对和三维象限过滤策略,从海量图像中智能筛选关键匹配对,仅需平面相机位置即可构建连通相机拓扑图;随后将相机间的空间关系建模为带权无向图,通过多视角光度一致性损失和基于节点重要性的自适应采样策略,引导3D高斯点向全局最优分布演化。这一过程结合了传统几何约束与现代可微分渲染的优势,在保证重建精度的同时显著提升计算效率。
1. 高效匹配:从“暴力穷举”到“精准狙击”

传统方法(如COLMAP)需遍历所有图像对(复杂度O(n²)),GraphGS通过数学策略筛选关键帧:
同心圆近邻配对:按距离分层采样,锁定局部与全局关键帧,从万级图像对中筛选千级关键帧,解决COLMAP暴力匹配耗时难题。
象限过滤:6位编码量化相机相对位姿,过滤无效匹配,消除长街景“断链”风险。
2. 相机图优化:让算法“看见”空间关系

多视角一致性约束:构建相机拓扑关系图,通过多视角一致性损失函数强化相邻视角几何一致性。动态平衡相邻视角差异,解决模糊、鬼影问题。
自适应采样:节点通过介数中心性动态调整采样频率,解决稀疏视点导致的伪影问题同时加快3DGS训练速度。
实测效果:街景、废墟、噪声场景全覆盖



在Waymo、KITTI等自动驾驶数据集上,GraphGS在无真值位姿输入的情况下达到29.43 PSNR和26.98 PSNR,街景重建准确,树枝纹理、车窗倒影清晰可见。面对Mill-19数据集同样不使用真值位姿,该方法在碎石堆积、墙体断裂等极端场景下仍能实现高质量新视角合成,碎石、断墙细节清晰重现。
落地场景:低门槛引爆三维革命
任意随拍视频,无需真实位姿重建结果展示,左侧为GT,右侧为重建场景。可以看到GraphGS实现了开放场景重建技术的三重突破:首次在无精确位姿输入条件下达成工业级重建精度,将千张图像处理速度提升至小时级,并支持消费级硬件实现平方公里级场景重建。这项技术不仅降低了三维数字化的硬件门槛,更为虚拟现实、智慧城市等领域提供了新的基础设施。
手机三维建模:用户环拍建筑、街景,自动生成元宇宙素材。
自动驾驶训练:车载摄像头数据直接生成高清地图。
城市数字化:无人机航拍公园,高效重建三维档案。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉交流群,成立啦!
目前我们已经建立了3D视觉方向多个社群,包括2D计算机视觉、最前沿、工业3D视觉、SLAM、自动驾驶、三维重建、无人机等方向,细分群包括:
工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。
SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。
自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。
三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等
无人机:四旋翼建模、无人机飞控等
2D计算机视觉:图像分类/分割、目标/检测、医学影像、GAN、OCR、2D缺陷检测、遥感测绘、超分辨率、人脸检测、行为识别、模型量化剪枝、迁移学习、人体姿态估计等
最前沿:具身智能、大模型、Mamba、扩散模型、图像/视频生成等
除了这些,还有求职、硬件选型、视觉产品落地、产品、行业新闻等交流群
添加小助理: cv3d001,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

3D视觉工坊知识星球
「3D视觉从入门到精通」知识星球(点开有惊喜),已沉淀6年,星球内资料包括:秘制视频课程近20门(包括结构光三维重建、相机标定、SLAM、深度估计、3D目标检测、3DGS顶会带读课程、三维点云等)、项目对接、3D视觉学习路线总结、最新顶会论文&代码、3D视觉行业最新模组、3D视觉优质源码汇总、书籍推荐、编程基础&学习工具、实战项目&作业、求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。
卡尔曼滤波、大模型、扩散模型、具身智能、3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪等。

— 完 —
点这里👇关注我,记得标星哦~
一键三连「分享」、「点赞」和「在看」
3D视觉科技前沿进展日日相见 ~