自监督论文阅读笔记 Self-supervised learning-based oil spill detection of hyperspectral images

本文提出了一种自监督学习方法用于高光谱图像的溢油检测,解决了监督学习中需要大量标注数据的问题。通过数据增强、无监督深度特征学习和溢油检测网络,该方法在10个溢油数据集上表现出良好性能。实验表明,这种方法提高了模型的泛化能力和检测准确性,尤其是在光谱和空间变换增强后,能够有效提取深层语义特征。
摘要由CSDN通过智能技术生成

        遥感领域的溢油监测 已经成为 探测污染区域的 空间分布 的热门技术。然而,以往的研究主要集中在监督检测技术上,这需要大量高质量的训练集。为了解决这一问题,本文提出了一种自监督学习方法从未标记的高光谱数据中 学习深度神经网络 用于溢油检测

        该方法包括三个部分:数据增强、无监督深度特征学习 和 溢油检测网络

  • 首先,原始图像用光谱 和 空间变换 增强,以提高自监督模型的鲁棒性。
  • 然后,在没有标签信息的增强数据上训练深度神经网络,以产生高级语义特征。
  • 最后,将训练好的参数转移到神经网络分类器中获得检测结果,并利用 对比损失 对学习参数进行微调,以提高该方法的泛化能力。

在10个溢油数据集上进行的实验表明,与其他高光谱检测方法相比,该方法具有良好的检测性能。


        近年来,随着石油泄漏频率的增加,大量原油泄漏到海洋中,严重威胁着海洋生物和人类的生存环境[1]。 2010年,位于墨西哥湾的Deepwater Horizo​​n钻井平台发生爆炸,导致490万桶原油流入墨西哥湾。石油泄漏污染了多种沿海物种。据估计,仅在 2010 年就有多达 65000 只濒临灭绝的海龟死亡,主要是由于石油污染。 2011年,蓬莱19-3油田在渤海湾发生溢油事故,造成7桶多桶石油泄漏到渤海湾,约6200平方公里海域受到污染。如果溢油不能及时清理,油膜很容易被海浪冲向海岸,造成火灾、沿海养殖、产盐等严重负面影响。因此,有必要 快速检测 海洋表面溢油的空间分布,为溢油清理和政府决策提供便利。

        遥感 已成为 检测溢油区域 的重要技术。与其他遥感数据相比,高光谱图像不仅提供了详细的空间信息,而且记录了更精细的光谱信息。这种独特的特性使其 更有效地区分溢油和海水[2-8]。

        在过去的几十年中,已经研究了许多溢油检测方法[9-14],大致可分为四类基于光谱分类器的方法、基于光谱匹配的方法、手工特征提取方法 和 深度学习模型


        在复杂的海面中,捕获的高光谱图像 通常会受到 图像噪声、太阳闪烁 阴影 等多种损害因素的破坏,严重影响后续检测性能。为了缓解这个问题,一些学者开发了高光谱图像恢复方法,并将光谱分类器 应用于 重建的数据, 来进行漏油检测。

        1. 光谱分类器 主要包括 支持向量机(SVM)、随机森林(RF) 多项逻辑回归(MLR)。例如,Yang 等人 [9] 将 SVM 分类器 应用在恢复的高光谱图像上实现溢油检测,其中恢复图像是通过对原始图像进行 小波变换 和 三个不同的滤波器来 去除图像噪声 和 太阳闪烁 而得到的。在参考[10] 中,RF分类器 对选定的光谱指数进行,以获得油污图。在参考[11] 中,提出了一种 纹理感知的全变分方法 来消除原始图像的阳光闪烁,并利用 SVM分类器 检测海面溢油。

        2. 基于光谱匹配的方法 旨在测量 给定光谱 与 所有候选光谱 之间的 光谱相似性。例如,Liu 等人 [12] 提出了一种 新的光谱曲线形状 匹配方法,其中将一阶和二阶光谱导数相结合,以测量参考光谱 与 观察光谱之间的匹配度。在参考 [13]中,提出了一种 传统的自适应余弦估计方法 来自动检测溢油区域。

        3. 手工特征提取方法 旨在 从原始图像中 提取浅层空间特征,然后使用光谱分类器,这有利于 去除图像噪声 和 阴影。在过去的几十年里,研究人员主要集中在利用 传统机器学习技术 进行溢油检测的发展[14-16]。例如,Song 等[14] 应用 小波变换 来增加 薄油膜 和 厚油膜 的光谱特性差异,将低频系数 作为后续任务的 敏感波段。 Liu 等人 [15] 研究了一种用于 溢油检测 的决策树框架,其中 最小噪声分数 用作特征提取器。 Song 等人 [16] 使用 主动轮廓模型 来表征输入的光谱空间特征,这有助于减少太阳闪烁和阴影对海洋表面的干扰。

       4.  此外,近年来,许多深度学习模型 也被应用于高光谱图像的溢油检测[17-21]。这些方法可以提取原始图像的 深层语义特征,表现出更鲁棒的检测性能。例如,Wang 等人 [17] 开发了一种用于海洋溢油检测的 光谱空间集成网络,其中一维 和 二维卷积神经网络 (CNN) 模型 用于提取光谱空间特征。 Zhu 等人 [18] 研究了几种深度学习模型的 油膜分类性能,包括反向传播

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值