HJ91 走方格的方案数【python3】

题目描述

请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。

注:沿棋盘格之间的边缘线行走
数据范围: 1 ≤ n , m ≤ 8 1 \le n,m \le 8 1n,m8

输入描述

输入两个正整数n和m,用空格隔开。(1≤n,m≤8)

输出描述

输出一行结果

代码

动态规划-二维数组

n,m=map(int,input().split())
# dp[i][j]记录从(0,0)走到(i,j)的方案数。
# 其中棋盘左上角是(0,0) 右下角坐标是(n,m)
dp=[[0]*(m+1) for _ in range(n+1)]

# 初始化dp:由于只能往右和往下,所以第0行和第0列的数值都为1
for i in range(1,n+1):
    dp[i][0]=1
for j in range(1,m+1):
    dp[0][j]=1

# 要走到(i,j)有两种可能:(i-1,j)向下走;(i,j-1)向右走
# 由于只能往右和往下,若从1开始循环则不用担心上面两个坐标会走出棋盘外
# dp[i][j]=dp[i-1][j]+dp[i][j-1]
for i in range(1,n+1):
    for j in range(1,m+1):
        dp[i][j]=dp[i-1][j]+dp[i][j-1]

print(dp[n][m])

动态规划-一维数组

由二维数组的动态规划解法可知,dp[i][j]只用到了上一行当前列和当前行前一列的历史数据,故可以只用一维数组dp[j]来记录历史数据,并且j递增更新当前行的dp(这样可以保证要用到原本的dp[i-1][j]时历史数据不会被当前数据覆盖掉)

n,m=map(int,input().split())
# dp[j]记录从(0,0)走到(i,j)的方案数。
dp=[0]*(m+1)

# 初始化dp:由于只能往右和往下,所以第0行都为1
for j in range(m+1):
    dp[j]=1

# 要走到(i,j)有两种可能:(i-1,j)向下走;(i,j-1)向右走
# 由于只能往右和往下,若从1开始循环则不用担心上面两个坐标会走出棋盘外
# dp[j]=[j]+[j-1]
for i in range(1,n+1):
    for j in range(1,m+1):
        dp[j]=dp[j]+dp[j-1]

print(dp[m])


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值