题目描述
请计算n*m的棋盘格子(n为横向的格子数,m为竖向的格子数)从棋盘左上角出发沿着边缘线从左上角走到右下角,总共有多少种走法,要求不能走回头路,即:只能往右和往下走,不能往左和往上走。
注:沿棋盘格之间的边缘线行走
数据范围:
1
≤
n
,
m
≤
8
1 \le n,m \le 8
1≤n,m≤8
输入描述
输入两个正整数n和m,用空格隔开。(1≤n,m≤8)
输出描述
输出一行结果
代码
动态规划-二维数组
n,m=map(int,input().split())
# dp[i][j]记录从(0,0)走到(i,j)的方案数。
# 其中棋盘左上角是(0,0) 右下角坐标是(n,m)
dp=[[0]*(m+1) for _ in range(n+1)]
# 初始化dp:由于只能往右和往下,所以第0行和第0列的数值都为1
for i in range(1,n+1):
dp[i][0]=1
for j in range(1,m+1):
dp[0][j]=1
# 要走到(i,j)有两种可能:(i-1,j)向下走;(i,j-1)向右走
# 由于只能往右和往下,若从1开始循环则不用担心上面两个坐标会走出棋盘外
# dp[i][j]=dp[i-1][j]+dp[i][j-1]
for i in range(1,n+1):
for j in range(1,m+1):
dp[i][j]=dp[i-1][j]+dp[i][j-1]
print(dp[n][m])
动态规划-一维数组
由二维数组的动态规划解法可知,dp[i][j]只用到了上一行当前列和当前行前一列的历史数据,故可以只用一维数组dp[j]来记录历史数据,并且j递增更新当前行的dp(这样可以保证要用到原本的dp[i-1][j]时历史数据不会被当前数据覆盖掉)
n,m=map(int,input().split())
# dp[j]记录从(0,0)走到(i,j)的方案数。
dp=[0]*(m+1)
# 初始化dp:由于只能往右和往下,所以第0行都为1
for j in range(m+1):
dp[j]=1
# 要走到(i,j)有两种可能:(i-1,j)向下走;(i,j-1)向右走
# 由于只能往右和往下,若从1开始循环则不用担心上面两个坐标会走出棋盘外
# dp[j]=[j]+[j-1]
for i in range(1,n+1):
for j in range(1,m+1):
dp[j]=dp[j]+dp[j-1]
print(dp[m])