剑指 Offer 47. 礼物的最大价值
在一个 m*n
的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0
)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
解题思路
这应该是和青蛙爬楼梯那题一样,最最经典的动态规划
题目了。
动态规划
状态表示: dp[i][j]
表示走到第i个格子时能拿到礼物的最大价值,则dp[m-1][n-1]
就是走到右下角最后一个格子时能拿到的礼物的最大价值。
状态转移: 只能往右或者往下走,也就是到达(i,j)
位置只能从上面下来,或者从左边过来,则我们不难得出dp[i][j] = Math.max(dp[i - 1][j] ,dp[i][j - 1]) + grid[i][j];
Java代码
class Solution {
public int maxValue(int[][] grid) {
if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
//第一列只能从上面下来
for(int i = 1;i < m;i++) dp[i][0] = dp[i - 1][0] + grid[i][0];
//第一行只能从走边过来
for(int j = 1; j < n;j++) dp[0][j] = dp[0][j - 1] + grid[0][j];
for(int i = 1;i < m;i++){
for(int j = 1;j < n;j++){
dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
}
Go代码
func jewelleryValue(frame [][]int) int {
/*
1、确定状态:dp[i][j]代表走到(i,j)位置时的数字总和
2、子问题:dp[i][j]应该是上边或者左边过来的,故转移方程为
dp[i][j] = max(d[i-1][j],d[i][j-1]) + frame[i][j]
3、初始值和边界条件,初始值为dp[0][0] = frame[0][0],
边界条件就是第一行没有上面,第一列没有左边
4、计算顺序:按行、列计算,返回dp[rows-1][cols-1]*/
if len(frame) == 0 || len(frame[0]) == 0 {
return 0
}
row,col := len(frame),len(frame[0])
dp := make([][]int,row)
for i := 0;i < row;i++ {
dp[i] = make([]int,col)
}
dp[0][0] = frame[0][0]
// 第一行
for j:= 1;j < col;j++ {
dp[0][j] = dp[0][j-1] + frame[0][j]
}
// 第一列
for i:=1;i < row;i++ {
dp[i][0] = dp[i-1][0] + frame[i][0]
}
for i := 1;i < row;i++ {
for j := 1;j < col;j++ {
dp[i][j] = max(dp[i-1][j],dp[i][j-1]) + frame[i][j]
}
}
return dp[row-1][col-1]
}
func max(a,b int) int {
if a > b {
return a
}
return b
}
扩展题:LeetCode 64 (LCR 099). 最小路径和
给定一个包含非负整数的m x n
网格grid
,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:一个机器人每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 200
- 0 <= grid[i][j] <= 100
注意:本题与主站 64 题相同: https://leetcode-cn.com/problems/minimum-path-sum/
解题思路
与上题礼物最大价值思路完全一样,不过是取最小而不是最大罢了
Go代码
func minPathSum(grid [][]int) int {
/*
1、确定状态:dp[i][j]代表走到(i,j)位置时的数字总和
2、子问题:dp[i][j]应该是上边或者左边过来的,故转移方程为
dp[i][j] = Math.min(d[i-1][j],d[i][j-1]) + grid[i][j]
3、初始值和边界条件,初始值为dp[0][0] = grid[0][0],
边界条件就是第一行没有上面,第一列没有左边
4、计算顺序:按行、列计算,返回dp[rows-1][cols-1]*/
if len(grid) == 0 || len(grid[0]) == 0 {
return 0
}
row,col := len(grid),len(grid[0])
dp := make([][]int,row)
for i := 0;i < row;i++ {
dp[i] = make([]int,col)
}
dp[0][0] = grid[0][0]
// 第一行
for j:= 1;j < col;j++ {
dp[0][j] = dp[0][j-1] + grid[0][j]
}
// 第一列
for i:=1;i < row;i++ {
dp[i][0] = dp[i-1][0] + grid[i][0]
}
for i := 1;i < row;i++ {
for j := 1;j < col;j++ {
dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j]
}
}
return dp[row-1][col-1]
}
func min(a,b int) int {
if a < b {
return a
}
return b
}