47. 礼物的最大价值

剑指 Offer 47. 礼物的最大价值

LCR 166. 珠宝的最高价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:

  • 0 < grid.length <= 200
  • 0 < grid[0].length <= 200

解题思路

这应该是和青蛙爬楼梯那题一样,最最经典的动态规划题目了。

动态规划
状态表示: dp[i][j]表示走到第i个格子时能拿到礼物的最大价值,则dp[m-1][n-1]就是走到右下角最后一个格子时能拿到的礼物的最大价值。

状态转移: 只能往右或者往下走,也就是到达(i,j)位置只能从上面下来,或者从左边过来,则我们不难得出dp[i][j] = Math.max(dp[i - 1][j] ,dp[i][j - 1]) + grid[i][j];

Java代码

class Solution {
    public int maxValue(int[][] grid) {
        if(grid == null || grid.length == 0 || grid[0].length == 0) return 0;
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n];

        dp[0][0] = grid[0][0];
        //第一列只能从上面下来
        for(int i = 1;i < m;i++) dp[i][0] = dp[i - 1][0] + grid[i][0];

        //第一行只能从走边过来
        for(int j = 1; j < n;j++) dp[0][j] = dp[0][j - 1] + grid[0][j];

        for(int i = 1;i < m;i++){
            for(int j = 1;j < n;j++){
                dp[i][j] = Math.max(dp[i - 1][j],dp[i][j - 1]) + grid[i][j];
            }
        }

        return dp[m - 1][n - 1];
    }
}

在这里插入图片描述

Go代码

func jewelleryValue(frame [][]int) int {
     /*
        1、确定状态:dp[i][j]代表走到(i,j)位置时的数字总和
        2、子问题:dp[i][j]应该是上边或者左边过来的,故转移方程为
          dp[i][j] = max(d[i-1][j],d[i][j-1]) + frame[i][j]
        3、初始值和边界条件,初始值为dp[0][0] = frame[0][0],
                   边界条件就是第一行没有上面,第一列没有左边
        4、计算顺序:按行、列计算,返回dp[rows-1][cols-1]*/

    if len(frame) == 0 || len(frame[0]) == 0 {
        return 0
    }
    row,col := len(frame),len(frame[0])
    dp := make([][]int,row)
    for i := 0;i < row;i++ {
        dp[i] = make([]int,col)
    }

    dp[0][0] = frame[0][0]
    // 第一行
    for j:= 1;j < col;j++ {
        dp[0][j] = dp[0][j-1] + frame[0][j]
    }
    // 第一列
    for i:=1;i < row;i++ {
        dp[i][0] = dp[i-1][0] + frame[i][0]
    }

    for i := 1;i < row;i++ {
        for j := 1;j < col;j++ {
            dp[i][j] = max(dp[i-1][j],dp[i][j-1]) + frame[i][j]
        }
    }

    return dp[row-1][col-1]
}

func  max(a,b int) int {
    if a > b {
        return a
    }
    return b
}

在这里插入图片描述

扩展题:LeetCode 64 (LCR 099). 最小路径和

LCR 099. 最小路径和

64.最小路径和

给定一个包含非负整数的m x n网格grid,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:一个机器人每次只能向下或者向右移动一步。

示例 1:
在这里插入图片描述

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 13111 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 100

注意:本题与主站 64 题相同: https://leetcode-cn.com/problems/minimum-path-sum/

解题思路

与上题礼物最大价值思路完全一样,不过是取最小而不是最大罢了

Go代码

func minPathSum(grid [][]int) int {
    /*
        1、确定状态:dp[i][j]代表走到(i,j)位置时的数字总和
        2、子问题:dp[i][j]应该是上边或者左边过来的,故转移方程为
          dp[i][j] = Math.min(d[i-1][j],d[i][j-1]) + grid[i][j]
        3、初始值和边界条件,初始值为dp[0][0] = grid[0][0],
                   边界条件就是第一行没有上面,第一列没有左边
        4、计算顺序:按行、列计算,返回dp[rows-1][cols-1]*/

    if len(grid) == 0 || len(grid[0]) == 0 {
        return 0
    }
    row,col := len(grid),len(grid[0])
    dp := make([][]int,row)
    for i := 0;i < row;i++ {
        dp[i] = make([]int,col)
    }

    dp[0][0] = grid[0][0]
    // 第一行
    for j:= 1;j < col;j++ {
        dp[0][j] = dp[0][j-1] + grid[0][j]
    }
    // 第一列
    for i:=1;i < row;i++ {
        dp[i][0] = dp[i-1][0] + grid[i][0]
    }

    for i := 1;i < row;i++ {
        for j := 1;j < col;j++ {
            dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j]
        }
    }

    return dp[row-1][col-1]
}

func  min(a,b int) int {
    if a < b {
        return a
    }
    return b
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值