A1089/B1035——Insert Merge插入与归并(测试点5、6)

坑点:
①归并排序时要考虑最后一组数量不足2i的情况,例如4个一组时最后只剩3个也要排序
②测试点迭代(当第i次排序与第i+1次得到序列相同时,这个时候默认为第i次排序)

#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=105;
int start[maxn],endd[maxn],Insert[maxn],Merge[maxn];
int n;
void In(int i){         //i表示第i次进行排序,first i=1;
    sort(Insert,Insert+i+1);
}

void Me(int i){
    int j;
    for(j=0;j<n-i;j+=i){
        sort(Merge+j,Merge+j+i);
    }
    sort(Merge+j,Merge+n);
}

int Issame(int a[]){
    for(int k=0;k<n;k++){
        if(a[k]!=endd[k]) return 0;
    }
    return 1;
}

int main(){
    scanf("%d",&n);
    for(int i=0;i<n;i++){
        scanf("%d",&start[i]);
        Insert[i]=start[i];
        Merge[i]=start[i];
    }

    for(int i=0;i<n;i++){
        scanf("%d",&endd[i]);
    }

    int flag=0,i,m=1;          //1 means Insert;2 means Merge
    for(i=1;i<n;i++){
        m=2*m;
        In(i);
        Me(m);

        if(Issame(Insert)==1){            //有一个输出就可以break了
            printf("Insertion Sort\n");
            In(i+1);
            for(int k=0;k<n;k++){
               printf("%d",Insert[k]);
               if(k!=n-1) printf(" ");
            }
            break;
        }
        
        if(Issame(Merge)==1){
            printf("Merge Sort\n");
            Me(2*m);
            for(int k=0;k<n;k++){
                printf("%d",Merge[k]);
                if(k!=n-1) printf(" ");
            }
            break;
        }
    }

return 0;
}

 

### C++ 中插入排序和归并排序的实现 #### 插入排序 插入排序是一种简单直观的排序算法。该算法通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 ```cpp void insertionSort(int arr[], int n) { for (int i = 1; i < n; ++i) { int key = arr[i]; int j = i - 1; while (j >= 0 && arr[j] > key) { arr[j + 1] = arr[j]; --j; } arr[j + 1] = key; } } ``` 这段代码展示了如何逐步将每个元素插入到已经排序的部分中[^1]。 #### 归并排序 归并排序采用分治法的思想,先递归地把数组分成两个子数组分别进行排序,再将这两个子数组合并成一个有序数组。 ```cpp void merge(int arr[], int l, int m, int r) { int n1 = m - l + 1; int n2 = r - m; int L[n1], R[n2]; for (int i = 0; i < n1; i++) L[i] = arr[l + i]; for (int j = 0; j < n2; j++) R[j] = arr[m + 1 + j]; int i = 0; int j = 0; int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } ``` 此部分实现了完整的归并排序逻辑,包括分割数组以及最终的合并操作[^4]。 这两段代码提供了两种不同的排序方式——插入排序适合较小规模的数据集;而归并排序则适用于更大范围内的应用场景,并且具有更稳定的性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值