前言
2024年的《人工智能大语言模型技术发展研究报告》深入分析了大语言模型的技术进展、应用现状,并对其在多模态数据处理、自适应学习能力、可解释性算法、垂直行业定制及隐私保护等方面的未来发展趋势进行了展望。
下载当前版本: 完整PDF书籍链接获取,可以V扫描下方二维码免费领取👇👇👇

第一章 大语言模型发展基石
- (一)软硬协同持续推动大模型能力提升
- (二)数据丰富度与质量塑造大模型知识深度与广度
- (三)算法优化与创新推动大模型能力升级
第二章 大语言模型发展现状
- (一)模型训练推理效率及性能明显提升
- (二)围绕中文生成与推理能力构筑比较优势
- (三)模型应用生态更加丰富多样
- (四)海量数据处理基础能力不断增强
- (五)采用多模型结合的路线加速应用落地
第三章 大语言模型的核心能力进阶
- (一)深层语境分析与知识融合强化语言理解应用
- (二)精确内容生成与增强搜索的融合
- (三)符号逻辑与神经网络的融合提升
- (四)上下文记忆能力的增强
- (五)更为可靠的内容安全与智能应答机制
第四章 大语言模型创新应用形态——智能体
- (一)智能体(AI Agent)
- (二)典型AI Agent案例
第五章 大语言模型应用发展趋势
- (一)大模型将更加注重多模态数据融合
- (二)大模型将提升自适应和迁移学习能力
- (三)采用可解释性算法提高模型透明度
- (四)垂直大模型产品研发需结合行业深度定制
- (五)大模型发展需妥善处理隐私保护与数据安全问题
- (六)大模型需更加注重能效比与绿色计算
下载当前版本: 完整PDF书籍链接获取,可以V扫描下方二维码免费领取👇👇👇
