Spark的wordcount

private static void wordCount() {
        //设置这次任务的名字和设置本地跑spark程序
        SparkConf conf = new SparkConf().setAppName("hzy").setMaster("local");
        JavaSparkContext sparkContext = new JavaSparkContext(conf);
        //读取文件地址
        JavaRDD<String> lines = sparkContext.textFile("E:\\hzyFtp\\aa\\words.txt");
        //List<hello,word,hello>
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) throws Exception {
                String[] arr = s.split(" ");
                List<String> list = Arrays.asList(arr);
                return list.iterator();
            }
        });
        //Map(<hello,1>,<word,1>,<hello,1>)
        JavaPairRDD<String,Integer> tuples =words.mapToPair(new PairFunction<String, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<>(s, 1);
            }
        });
        //聚合Map(<hello,2>,<word,1>)
        JavaPairRDD<String,Integer> reduced = tuples.reduceByKey(new Function2<Integer, Integer, Integer>() {
            @Override
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1+v2;
            }
        });

        //单词和它出现的次数做一个颠倒,交换
        JavaPairRDD<Integer,String> swaped = reduced.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            @Override
            public Tuple2<Integer, String> call(Tuple2<String, Integer> tup) throws Exception {
                return tup.swap();
            }
        });

        //排序
        JavaPairRDD<Integer,String> sorted =swaped.sortByKey();

        //数据的一个位置交换
        JavaPairRDD<String,Integer> res = sorted.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
            @Override
            public Tuple2<String, Integer> call(Tuple2<Integer, String> tup) throws Exception {
                return tup.swap();
            }
        });

		//把结果写出去,一半情况下我们选择写到hdfs中
        res.saveAsTextFile("D:\\ceshi\\out");
        sparkContext.stop();

    }
下面是一个简单的Spark WordCount程序: ```python from pyspark import SparkConf, SparkContext conf = SparkConf().setAppName("WordCount") sc = SparkContext(conf=conf) text_file = sc.textFile("hdfs://localhost:9000/input/sample.txt") words = text_file.flatMap(lambda line: line.split(" ")) word_counts = words.map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b) word_counts.saveAsTextFile("hdfs://localhost:9000/output/wordcount") ``` 程序的功能是统计一个文本文件中每个单词出现的次数,并将结果保存到HDFS上。 下面是代码的详细解释: 首先,我们导入了`SparkConf`和`SparkContext`。这两个类是Spark的核心类,`SparkConf`用于配置Spark应用程序的属性,`SparkContext`用于连接Spark集群。 ```python from pyspark import SparkConf, SparkContext ``` 接下来,我们创建了一个`SparkConf`实例,并给应用程序命名为`WordCount`。我们还创建了一个`SparkContext`实例,并将`SparkConf`传递给它。这些代码将初始化Spark应用程序并连接到Spark集群。 ```python conf = SparkConf().setAppName("WordCount") sc = SparkContext(conf=conf) ``` 然后,我们使用`textFile()`方法从HDFS中读取输入文件,并创建一个RDD(弹性分布式数据集)。 ```python text_file = sc.textFile("hdfs://localhost:9000/input/sample.txt") ``` 接下来,我们使用`flatMap()`方法将每行文本拆分成单词,并创建一个新的RDD。 ```python words = text_file.flatMap(lambda line: line.split(" ")) ``` 然后,我们使用`map()`方法将每个单词转换为一个`(单词, 1)`的键值对,并创建一个新的RDD。 ```python word_counts = words.map(lambda word: (word, 1)) ``` 接下来,我们使用`reduceByKey()`方法对每个单词的计数进行聚合,并创建一个新的RDD。 ```python word_counts = word_counts.reduceByKey(lambda a, b: a + b) ``` 最后,我们使用`saveAsTextFile()`方法将结果保存到HDFS上,并指定输出目录。 ```python word_counts.saveAsTextFile("hdfs://localhost:9000/output/wordcount") ``` 这就是完整的Spark WordCount程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值