算法基础课—搜索与图论(四)最小生成树与二分图

最小生成树

应用——无向图
稀疏图一般用堆优化Prim、稠密图用朴素版Prim
在真实应用中,稠密图一般用朴素版Prim,稀疏图用Kruscal
在这里插入图片描述

prim算法——最小生成树

需要的数据结构

1、邻接矩阵——g[][] 由于prim算法一般用于稠密图,所以往往使用邻接矩阵
2、dist[]数组——记录各个点到当前集合内的最小距离
3、st[]——记录是否加入集合

算法思想

1、初始化:邻接矩阵初始化为∞,dist数组初始化,可以选择任意一个点加入集合st,st初始化
2、构造图,无向图的边赋值 g[a][b] = g[b][a] = w
3、for(i = 1; i <= n; i ++)
4、找到集合中dist最小的点,及距离集合最近的点
5、用t 更新其他点到集合的距离
6、st设置
在这里插入图片描述

模板

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

自己的代码

#include<iostream>
#include <cstring>
using namespace std;
const int N = 503;
int n, m;
int g[N][N];
int dist[N];
bool st[N];
int prim(){
    int i, j, res = 0;
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for(i = 1; i <= n; i ++){
        int t = -1;
        for(j = 1; j <= n; j ++)
            //寻找当前距离集合最小的加入集合
            if(!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;
        if(dist[t] == 0x3f3f3f3f) return 0x3f3f3f3f;
        st[t] = true;
        res += dist[t];
        //遍历其所有边,更改dist
        for(j = 1; j <= n; j ++){
            if(!st[j])//这个if判断加不加都可以,因为判断过的dist[j]都不会再用到了
                dist[j] = min(dist[j],g[t][j]);
        }
    }
    return res;
}
int main(){
    cin>>n>>m;
    int i, a, b, w;
    memset(g, 0x3f, sizeof g);
    for(i = 0; i < m; i ++){
        cin>>a>>b>>w;
        g[a][b] = g[b][a]= min(g[a][b], w);//无向边,倒序逆序都要赋值
    }
    int result = prim();
    if(result == 0x3f3f3f3f) cout<<"impossible"<<endl;
    else cout<<result<<endl;
}

Kruskal算法

其实是并查集

需要的数据结构

1、p[]——并查集
2、结构体数组edges[],同时在设置时进行运算符重载,方便之后的排序操作
3、cnt——判断结束标志,合并两个不连通集的时候cnt++,如果图是连通图,则cnt要=n-1,如果要与n-1说明图不是连通图,没有最小生成树

算法思想

1、初始化:
结构体的初始化

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

并查集的初始化

   for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

2、将所有边按照权重排序

sort(edges, edges + m);

3、对每条边进行循环
判断是否联通——

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并

如果不连通,则将这两个连通块合并

        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }

4、判断是否存在最小生成树——cnt

if (cnt < n - 1) return INF;

在这里插入图片描述

模板

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

自己的代码

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
//因为要排序,所以更好的是用结构体写
const int M = 2e5 + 10, N = 1e5 + 10;
int n, m;
int p[N];
int find(int x){
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}
struct Edge{
    int a, b, w;
    bool operator<(const Edge e) const{
        return w < e.w;
    }
}edges[M];
int kruscal(){
    int i, cnt, res = 0;
    for(i = 1; i <= n; i ++) p[i] = i;//初始化并查集
    sort(edges, edges + m);//结构体排序
    for(i = 0; i < m; i ++){
        int a = edges[i].a;
        int b = edges[i].b;
        int w = edges[i].w;
        int ax = find(a), bx = find(b);
        if(ax != bx){
            p[ax] = bx;
            res += w;
            cnt ++;//类似于统计边数?由于那些联通块内的不影响所以可以不统计
        }
    }
    if(cnt < n - 1) return 0x3f3f3f3f;//最小生成树最少要有n-1条边并且能够联通
    else return res;
}
int main(){
    cin>>n>>m;
    int i, a, b, w;
    for(i = 0; i < m; i ++){
        cin>>a>>b>>w;
        if(a != b)
            edges[i] = {a, b, w};//如果有重边怎么办?
    }
    int result = kruscal();
    if(result == 0x3f3f3f3f) cout<<"impossible"<<endl;
    else cout<<result<<endl;
    
}

二分图

在这里插入图片描述

奇数环——环中边的个数是奇数
如果图中不含有奇数环——二分图。如果是二分图——不含有奇数环

匈牙利算法
可以返回匹配数量最大的

染色法判断二分图

染色问题
一条边的左右端点一定不属于相同集合。一个是1,则与他相连的点是2
在这里插入图片描述
染色法判断二分图
如果在染色过程中没有矛盾则是二分图,有矛盾则是二分图
在这里插入图片描述

算法思想——染色法判断二分图

进行搜索,可以用深度优先也可以用宽度优先
如果在搜索的过程中,color == 0 ,则说明还没有被染色,则染色成对应颜色
遍历他们的边,如果某个邻点的color和当前相同,return false 。如果没有被染色,则染成相反颜色,继续深度优先搜索。
注意的点,由于图可能不是连通图,所以要以每个起点开始都遍历一遍。

模板

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示未染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

自己的代码

//注意有可能图不连通,所以不能只固定一个起点
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010, M = 200010;
int n, m;
int h[N], e[M], ne[M], idx;
int color[N];
void add(int a, int b){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx;
    idx ++;
}
bool dfs(int u, int c){
    int i;
    color[u] = c;
    for(i = h[u]; i != -1; i = ne[i]){
        int j = e[i];
        if(!color[j]){
            if(!dfs(j, 3 - c)) return false;//注意这一步,要把bool结果返回回去
        }
        else if(color[j] == c) return false;
    }
    return true;
}
int main(){
    int i, a, b;
    bool flag = true;
    memset(h,-1,sizeof h);
    cin>>n>>m;
    for(i = 0; i < m; i ++){
        cin>>a>>b;
        add(a, b);
        add(b, a);//注意无向图两个都要加!!!!
    }
    for (int i = 1; i <= n; i ++ )
        if (!color[i])
        {
            if (!dfs(i, 1))
            {
                flag = false;
                break;
            }
        }
    if(flag) cout<<"Yes"<<endl;
    else cout<<"No"<<endl;
    
}

匈牙利算法——二分图的最大匹配

返回当前已经分好的二分图,可以匹配的最大匹配数
思想:如果可以匹配,就选取序号靠前的匹配(即第一个中意的),如果不行,依次查看其它中意的,如果中意的都有男朋友了,则看依次看其中意的男朋友能不能换一个女朋友
例子
第一个男的根据第一个中意的匹配大女孩子,第二个也类似
在这里插入图片描述
第三个男的匹配女的时候发现自己中意的女孩子,不是单身了,于是找到中意的女孩子的男朋友,看他是否可以换个女朋友,发现可以,于是各自匹配
在这里插入图片描述
第四个男生匹配
在这里插入图片描述

需要的数据结构

1、match[i]——记录第i个女生匹配到的男生序号
2、st[]——当男生在匹配女生时,记录这个女生是否被访问过,这个很需要,否则会无限循环

算法思想

1、依次遍历男生进行匹配
2、匹配——find函数
遍历其所有边
如果没有被访问过则查看女生是否有男朋友,如果没有,则匹配,如果有,则查看其所属男朋友是否可以找到其他女生。

        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }

模板

时间复杂度是 O(nm)O(nm), nn 表示点数,mm 表示边数
int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

代码

//关于为什么一定要st数组,不加st数组会超出内存
//关于为什么要st数组是理解这道题的一个核心难点,我觉得最容易理解的一种说法是:
//如果没有st数组,那么假设左边1与右边1匹配,左边2也与右边1匹配,那么在给左边第二个点找匹配的时候,就会有,去递归右边1的对象(左边1),继而左边1执行find(1)的时候因为不加st数组的原因会无限递归find(1),从而导致爆栈
#include <iostream>
#include <cstring>
using namespace std;
const int N = 502, M = 1e5 + 10;
int n, m;
int match[N] = {0};
int h[N], e[M], ne[M], idx = 0;
bool st[N];
void add(int a,int b){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx;
    idx++;
}
bool find(int l){
    int i;
    for(i = h[l]; i != -1; i = ne[i]){
        int j = e[i];
        
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = l;
                return true;
            }
        }
    }
    return false;
}
int main(){
    int n1, n2, m, res = 0;
    cin>>n1>>n2>>m;
    int a, b, i;
    memset(h, -1, sizeof h);
    while(m--){
        cin>>a>>b;
        add(a, b);
    }
    for (int i = 1; i <= n1; i ++ )
    {
        memset(st, false, sizeof st);
        if (find(i)) res ++ ;
    }
    cout<<res<<endl;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值