算法基础课—数学知识(四)高斯消元、组合数

高斯消元——解方程组

应用:在n的三次方时间内可以解n个方程组的解
方法:矩阵的行列变换
思想:先消元,再回代
最后可以把矩阵变成一个上三角的形式
在这里插入图片描述

对于有解和无解的判断

如果0=非零,说明矛盾,肯定无解
如果出现0=0,说明其中一组和某一组表达的意思相同,说明少于n个方程组,求解n个未知数,那肯定存在无穷多组解
在代码中由于出现左侧全0的情况,在每次迭代中,都会被交换到后几行,所以我们只需要对后几行全零的情况进行判断,存在左侧(x1…xn)全0,右侧(b)也等于0,则有解,如果右侧(b)不等于0,则无解

例子

消元

在这里插入图片描述
从第一列开始,找到绝对值最大的行,为第二行,和第一行交换
在这里插入图片描述
将第一行的第一个数变成1,同一行其他数跟随者按比例缩小或放大。
在这里插入图片描述
将下面所有列都置为的第c列都变成0, 则是对该行的按比例放缩,然后相减
在这里插入图片描述
对第二列进行操作,找到绝对值最大的那行,不包括第一行,第一行已经固定,然后,将其第一个数变成1,然后依次将后续几列的第一个数变成0.
在这里插入图片描述
针对第三列,找到后续绝对值最大的行(不包括前面已经固定的第一行和第二行),然后将第一个数变成1,将下面所有行的第三列变成0,由于不存在之后的列所以不需要这步操作。
在这里插入图片描述

回代

将第二行的左侧不是1的x变成0——将第二行-1/3第三行
在这里插入图片描述
将第一行的左侧第一个不是1的数变成0,——第一行-0.5
第二行
在这里插入图片描述
将第一行的左侧第一个不是1的数变成0,——第一行-(-1.5)*第三行
在这里插入图片描述
所以最后得到的最后一列即为方程组的解

有无穷多个解的情况

出现如
1 2 0 3
0 2 0 2
1 0 0 1
如果存在某一列都完全是0,则没有关于这一列的信息,消元到最后会变成
1 2 0 3
0 2 0 2
0 0 0 0
此时,可以设置一个数r,在找寻每列绝对值最大的行的时候,如果发现绝对值最大为0,则这一列必定都是0,所以此时r是不叠加的,r用来表示有实际意义的方程个数,显然如果无解r会小于n,所以如果r小于n,且最后一行的b也是0,说明0 = 0,有一个数没有对应方程,则有无穷多个解

无解的情况

出现如
1 2 0 3
0 2 0 2
1 0 0 2
如果存在某一列都完全是0,则没有关于这一列的信息,消元到最后会变成
1 2 0 3
0 2 0 2
0 0 0 1
此时,可以设置一个数r,在找寻每列绝对值最大的行的时候,如果发现绝对值最大为0,则这一列必定都是0,所以此时r是不叠加的,r用来表示有实际意义的方程个数,显然如果无解r会小于n,所以如果r小于n,且最后一行的b不等于0,说明0 = 非0,则有无解。

算法思路

1、 对每n列进行迭代
2、找寻绝对值最大的那一行,如果找到的绝对值最大的那一行的绝对值等于0,说明该列的x没有有效的信息提供,直接continue。
3、如果找到绝对值最大的那一行,则将那一行和最上面的行进行交换(由r控制当前最上面的行)
4、将对应第c列的第r行,进行放缩,将第c列第r行的值放缩到1。即除法,这一行每个数除以第c列第r行的值
5、将后续几行的第c列都变成0,将对应第j行 - 第j行第c列的值* 第r行
6、r ++。表明有效的方程数加1
7、循环结束后,进行回代,从后面的行数开始往上走,j从第i+1列开始
a[i][n] = a[i][n] - a[j][n] * a[i][n]

题目

输入一个包含 n 个方程 n 个未知数的线性方程组。

方程组中的系数为实数。

求解这个方程组。

下图为一个包含 m 个方程 n 个未知数的线性方程组示例:

9a504fc2d5628535be9dcb5f90ef76c6a7ef634a.gif

输入格式
第一行包含整数 n。

接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。

输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。

如果给定线性方程组存在无数解,则输出 Infinite group solutions。

如果给定线性方程组无解,则输出 No solution。

数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。

输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00

代码模板

#include <iostream>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-6;

int n;
double a[N][N];


int gauss()
{
   
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
   
        int t = r;
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][c]) > fabs(a[t][c]))
                t = i;

        if (fabs(a[t][c]) < eps) continue;

        for (int i = c; i < n + 1; i ++ ) swap(a[t][i], a[r][i]);
        for (int i = n; i >= c; i -- ) a[r][i] /= a[r][c];

        for (int i = r + 1; i < n; i ++ )
            if (fabs(a[i][c]) > eps)
                for (int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];

        r ++ ;
    }

    if (r < n)
    {
   
        for (int i = r; i < n; i ++ )
            if (fabs(a[i][n]) > eps)
                return 2;
        return 1;
    }

    for (int i = n - 1; i >= 0; i -- )
        for (int j = i + 1; j < n; j ++ )
            a[i][n] -= a[j][n] * a[i][j];

    return 0;
}

int main()
{
   
    cin >> n;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            cin >> a[i][j];

    int t = gauss();

    if (t == 0)
    {
   
        for (int i = 0; i < n; i ++ ) printf("%.2lf\n", a[i][n]);
    }
    else if (t == 1) puts("Infinite group solutions");
    else puts("No solution");

    return 0;
}

作者:yxc
链接:https://www.acwing.com/activity/content/code/content/53389/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

自己的代码

#include <iostream>
#include <cmath>
using namespace std;
const int N = 1e2 + 10;
double a[N][N];
int n;
void out(){
   
    int i, j;
    for(i = 0;i < n; i ++){
   
        for(j = 0; j < n + 1; j ++){
   
            cout<<a[i][j]<<" "
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值