详解斜率优化

这里讲一下斜率优化,其实也是给自己复习一下。
我们从一道例题开始:

BZOJ1597: [Usaco2008 Mar]土地购买

Description

农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.

Input

  • 第1行: 一个数: N

  • 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽

Output

  • 第一行: 最小的可行费用.

Sample Input

4

100 1

15 15

20 5

1 100

输入解释:

共有4块土地.

Sample Output

500

HINT

FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.

Source

Gold

这题我们先想一想基本思路,我们可以先按长排序(从大到小,若长相等则按宽从大到小),然后我们可以扫一遍宽(因为长已经从大到小了),如果i+1的宽小于i的宽,那么就不用把i放入数组了,因为i可以买下i+1。所以我们将一个问题转换成了将数组分成连续的多段(因为每段的两端点的宽和长即为最长和最宽),然后直接DP就行。
令f[i]为前i个土地全买下的最小价格,x[i]为长,y[i]为宽。
则我们可以得到DP转移方程 f[i]=min{f[j1]+x[j]y[i]}(1<=j<=i
这里的DP方程可能于代码中的不同( f[i]=min{f[j]+x[j+1]y[i]}(0<=j<=i) ),但是不影响学习斜率优化。

但是我们会发现,直接枚举两层循环是会超时的,于是我们要想个办法,这时我可以用斜率优化。
设 j< k< i
当 k比j更优秀时,我们可以发现

f[k1]+x[k]y[i]<=f[j1]+x[j]y[i]

(x[j]x[k])y[i]>=f[k1]f[j1]

y[i]>=f[k1]f[j1]x[j]x[k]
(x是降序,所以除过来不等式不用变号)
所以我们可以得到,当j,k满足这个样子时,我们可以将j舍去。

接着我们又可以发现
令g(j,k)= f[k1]f[j1]x[j]x[k] (我们上面已经知道,当g(j,k)<=y[i]时,k比j优)
设j< k< i< i’
Case1:当 g(j,k)>=g(k,i) y[i] 有三种可能
1. y[i]>=g(j,k)>=g(k,i) 时,k比j优,i比k优,所以i最优。
2. g(j,k)>=y[i]>=g(k,i) 时,j比k优,i比k优,所以i,j都比k优。
3. g(j,k)>=g(k,i)>=y[i] 时,k比i优,j比k优,所以j最优。
所以通过分类讨论我们可以得到,无论如何k都可以被舍去。
Case2:当 g(i,j)<g(k,i) 时 我们可以进行同样的分类讨论
但我们发现当 g(j,k)<=y[i]<g(k,i) 时 k是最优的,所以我们不能将k舍去。
这里的g(j,k)是不是很像求斜率的公式 k= yyxx
所以我们可以用一个单调队列来维护这个过程。
具体维护可以参考代码(由于除可能会有精度误差,故代码中装换成乘来比较)。

#include<algorithm>
#include<cstdio>
#include<iostream>
using namespace std;
struct node
{
    long long x,y;
}a[50010],b[50010];
int n;
long long q[100000],f[100000];
bool cmp(node a,node b)
{
    if (a.x>b.x) return true;
    if (a.x==b.x&&a.y>b.y) return true;
    return false;
}
bool check(int i,int j,int k)
{
    long long x1=a[i].y*(a[k+1].x-a[j+1].x);
    long long y1=f[j]-f[k];
    if (x1<=y1) return true;else return false;
}
bool check1(int k,int j,int i)
{
    long long x1=(f[k]-f[j])*(a[i+1].x-a[j+1].x); 
    long long y1=(f[j]-f[i])*(a[j+1].x-a[k+1].x);
    if (x1>=y1) return true;else return false;
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d%d",&a[i].x,&a[i].y);
    sort(a+1,a+n+1,cmp);
    int tot=1;
    b[1]=a[1];
    for (int i=1;i<=n;i++)
        if (a[i].y>b[tot].y) tot++,b[tot]=a[i];    
    for (int i=1;i<=tot;i++) a[i]=b[i];
    int head=1,tail=2;
    q[1]=0;f[0]=0;
    for (int i=1;i<=tot;i++)
    {
        while (head<tail-1&&check(i,q[head],q[head+1])) head++;
        f[i]=f[q[head]]+a[q[head]+1].x*a[i].y;
        while (head<tail-1&&check1(q[tail-2],q[tail-1],i)) tail--;
        q[tail]=i;tail++;
    }
    printf("%lld\n",f[tot]);
    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值